Study of Micro-Hardness of Steel Surfaces after their Friction in the Medium of Plastic Lubricating Material Used in the Units and Mechanisms of Equipment of Oil and Gas and Shipbuilding Industry

Article Preview

Abstract:

The paper presents studies of the Vickers hardness of various areas of steel friction surfaces, on which normal and adhesive types of wear were observed after the process of friction in the environment of the lubricant of various grades. Implemented a comparison of the friction surface hardness with the original surface. It is shown that the hardness varies in the process of friction and has different values ​​depending on the lubricating medium and the type of wear.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

684-689

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Fadin Y.A., Kireenko O.F., Sychev S.V., Breki A.D. 2014. Acoustic emission and surface roughness of brittle materials. Technical Physics Letters. Т. 40. № 12. pp.1089-1091. Reference to a book:.

DOI: 10.1134/s1063785014120232

Google Scholar

[2] Breki A.D., Vasilyeva E.S., Tolochko O.V., Didenko A.L., Kudryavtsev V.V., Kolmakov A.G., Sergeyev N.N., Gvozdev A.E., Starikov N.E., Provotorov D.A., Fadin Y.A. 2016. Synthesis and tribotechnical properties of composite coatings with PM–DADPE polyimide matrix and fillers of tungsten dichalcogenide nanoparticles upon dry sliding friction. Inorganic Mater.: Appl. Research., 7 (4) 542-546.

DOI: 10.1134/s2075113316040067

Google Scholar

[3] Breki A.D., Didenko A.L., Kudryavtsev V.V., Vasilyeva E.S., Tolochko O.V., Gvozdev A.E., Sergeyev N.N., Provotorov D.A., Starikov N.E., Fadin Yu.A., Kolmakov A.G. 2017. Composite coatings based on A–OOO polyimide and WS2 nanoparticles with enhanced dry sliding characteristics. Inorganic Mater.: Appl. Research, 8 (1) 56-59.

DOI: 10.1134/s2075113317010075

Google Scholar

[4] Breki A.D., Didenko A.L., Kudryavtsev V.V., Vasilyeva E.S., Tolochko O.V., Kolmakov A.G., Gvozdev A.E., Provotorov D.A., Starikov N.E., Fadin Yu.A. 2017. Synthesis and dry sliding behavior of composite coating with (R-OOO)FT polyimide matrix and tungsten disulfide nanoparticle filler. Inorganic Mater.: Appl. Research., 8 (1) 32-36.

DOI: 10.1134/s2075113317010063

Google Scholar

[5] Breki A.D., Gvozdev A.E., Kolmakov A.G., Starikov N.E., Provotorov D.A., Sergeyev N.N., Khonelidze D.M. 2017. On friction of metallic materials with consideration for superplasticity phenomenon. Inorganic Materials: Applied Research. 8. (1). pp.126-129.

DOI: 10.1134/s2075113317010087

Google Scholar

[6] Breki A.D., Gvozdev A.E., Kolmakov A.G. Application of generalized pascal triangle for description of oscillations of friction forces. Inorganic Materials: Applied Research. 2017. Т. 8. № 4. С. 509-514.

DOI: 10.1134/s2075113317040049

Google Scholar

[7] Alexandrov S.E., Tyurikov K.S., Breki A.D. Low-temperature plasma-chemical deposition of nanocomposite antifriction molybdenum disulfide (filler)–silicon oxide (matrix) coatings. Russian Journal of Applied Chemistry. 2017. Т. 90. № 11. С. 1753-1759.

DOI: 10.1134/s1070427217110040

Google Scholar

[8] Breki A.D., Aleksandrov S.E., Tyurikov K.S., Kolmakov A.G., Gvozdev A.E., Kalinin A.A. Antifriction properties of plasma-chemical coatings based on SiO2 with MoS2 nanoparticles under conditions of spinning friction on SHKH15 steel. Inorganic Materials: Applied Research. 2018. Т. 9. № 4. С. 714-718.

DOI: 10.1134/s2075113318040081

Google Scholar

[9] Breki A.D., Kol'tsova T.S., Skvortsova A.N., Tolochko O.V., Aleksandrov S.E., Kolmakov A.G., Lisenkov A.A., Fadin Y.A., Gvozdev A.E., Provotorov D.A. Ttribotechnical properties of composite material aluminum–carbon nanofibers, under friction on steels 12KH1 and SHKH15. Inorganic Materials: Applied Research. 2018. Т. 9. № 4. С. 639-643.

DOI: 10.1134/s207511331804007x

Google Scholar

[10] Koltsova T.S., Breki A.D., Larionova T.V., Tolochko O.V. Operational characteristics of the composite aluminum - carbon nanofibers. Materials Physics and Mechanics. 2018. Т. 38. № 1. С. 11-15.

Google Scholar

[11] Sergeev N.N., Minaev I.V., Gvozdev A.E., Cheglov A.E., Tsyganov I.A., Tikhonova I.V., Alyavdina E.S., Gubanov O.M., Breki A.D. Decarburization and the influence of laser cutting on steel structure. Steel in Translation. 2018. Т. 48. № 5. С. 313-319.

DOI: 10.3103/s096709121805008x

Google Scholar

[12] Breki A.D., Medvedeva V.V., Krylov N.A., Aleksandrov S.E., Kolmakov A.G., Gvozdev A.E., Sergeev N.N., Provotorov D.A., Fadin Y.A. Antiwear properties of composite greases LITOL-24–magnesium hydrosilicate particles,. Inorganic Materials: Applied Research. 2018. Т. 9. № 1. С. 21-25.

DOI: 10.1134/s2075113318010057

Google Scholar

[13] Breki A. and Nosonovsky, M. 2018. Ultraslow frictional sliding and the stick-slip transition. Appl. Phys. Lett. 113 (24), 241602.

DOI: 10.1063/1.5064820

Google Scholar

[14] Breki, A., Nosonovsky, M. Einstein's Viscosity Equation for Nanolubricated Friction // Langmuir 2018, 34, 12968−12973.

DOI: 10.1021/acs.langmuir.8b02861

Google Scholar

[15] Khrushchev MM, Berkovich E.S. Microhardness determined by the indentation method. M. - L., Publishing House of the Academy of Sciences of the USSR, (1943).

Google Scholar

[16] Khrushchev MM, Berkovich E.S. PMT-2 and PMT-3 devices for microhardness testing. Institute of Engineering. Publishing house of the Academy of Sciences of the USSR, (1950).

Google Scholar

[17] Glazov V.M., Vigdorovich V.N. Microhardness of metals and semiconductors. Second edition, revised and updated. Metallurgy Publishing House, 1969, 248p.

Google Scholar