[1]
Fadin Y.A., Kireenko O.F., Sychev S.V., Breki A.D. 2014. Acoustic emission and surface roughness of brittle materials. Technical Physics Letters. Т. 40. № 12. pp.1089-1091. Reference to a book:.
DOI: 10.1134/s1063785014120232
Google Scholar
[2]
Breki A.D., Vasilyeva E.S., Tolochko O.V., Didenko A.L., Kudryavtsev V.V., Kolmakov A.G., Sergeyev N.N., Gvozdev A.E., Starikov N.E., Provotorov D.A., Fadin Y.A. 2016. Synthesis and tribotechnical properties of composite coatings with PM–DADPE polyimide matrix and fillers of tungsten dichalcogenide nanoparticles upon dry sliding friction. Inorganic Mater.: Appl. Research., 7 (4) 542-546.
DOI: 10.1134/s2075113316040067
Google Scholar
[3]
Breki A.D., Didenko A.L., Kudryavtsev V.V., Vasilyeva E.S., Tolochko O.V., Gvozdev A.E., Sergeyev N.N., Provotorov D.A., Starikov N.E., Fadin Yu.A., Kolmakov A.G. 2017. Composite coatings based on A–OOO polyimide and WS2 nanoparticles with enhanced dry sliding characteristics. Inorganic Mater.: Appl. Research, 8 (1) 56-59.
DOI: 10.1134/s2075113317010075
Google Scholar
[4]
Breki A.D., Didenko A.L., Kudryavtsev V.V., Vasilyeva E.S., Tolochko O.V., Kolmakov A.G., Gvozdev A.E., Provotorov D.A., Starikov N.E., Fadin Yu.A. 2017. Synthesis and dry sliding behavior of composite coating with (R-OOO)FT polyimide matrix and tungsten disulfide nanoparticle filler. Inorganic Mater.: Appl. Research., 8 (1) 32-36.
DOI: 10.1134/s2075113317010063
Google Scholar
[5]
Breki A.D., Gvozdev A.E., Kolmakov A.G., Starikov N.E., Provotorov D.A., Sergeyev N.N., Khonelidze D.M. 2017. On friction of metallic materials with consideration for superplasticity phenomenon. Inorganic Materials: Applied Research. 8. (1). pp.126-129.
DOI: 10.1134/s2075113317010087
Google Scholar
[6]
Breki A.D., Gvozdev A.E., Kolmakov A.G. Application of generalized pascal triangle for description of oscillations of friction forces. Inorganic Materials: Applied Research. 2017. Т. 8. № 4. С. 509-514.
DOI: 10.1134/s2075113317040049
Google Scholar
[7]
Alexandrov S.E., Tyurikov K.S., Breki A.D. Low-temperature plasma-chemical deposition of nanocomposite antifriction molybdenum disulfide (filler)–silicon oxide (matrix) coatings. Russian Journal of Applied Chemistry. 2017. Т. 90. № 11. С. 1753-1759.
DOI: 10.1134/s1070427217110040
Google Scholar
[8]
Breki A.D., Aleksandrov S.E., Tyurikov K.S., Kolmakov A.G., Gvozdev A.E., Kalinin A.A. Antifriction properties of plasma-chemical coatings based on SiO2 with MoS2 nanoparticles under conditions of spinning friction on SHKH15 steel. Inorganic Materials: Applied Research. 2018. Т. 9. № 4. С. 714-718.
DOI: 10.1134/s2075113318040081
Google Scholar
[9]
Breki A.D., Kol'tsova T.S., Skvortsova A.N., Tolochko O.V., Aleksandrov S.E., Kolmakov A.G., Lisenkov A.A., Fadin Y.A., Gvozdev A.E., Provotorov D.A. Ttribotechnical properties of composite material aluminum–carbon nanofibers, under friction on steels 12KH1 and SHKH15. Inorganic Materials: Applied Research. 2018. Т. 9. № 4. С. 639-643.
DOI: 10.1134/s207511331804007x
Google Scholar
[10]
Koltsova T.S., Breki A.D., Larionova T.V., Tolochko O.V. Operational characteristics of the composite aluminum - carbon nanofibers. Materials Physics and Mechanics. 2018. Т. 38. № 1. С. 11-15.
Google Scholar
[11]
Sergeev N.N., Minaev I.V., Gvozdev A.E., Cheglov A.E., Tsyganov I.A., Tikhonova I.V., Alyavdina E.S., Gubanov O.M., Breki A.D. Decarburization and the influence of laser cutting on steel structure. Steel in Translation. 2018. Т. 48. № 5. С. 313-319.
DOI: 10.3103/s096709121805008x
Google Scholar
[12]
Breki A.D., Medvedeva V.V., Krylov N.A., Aleksandrov S.E., Kolmakov A.G., Gvozdev A.E., Sergeev N.N., Provotorov D.A., Fadin Y.A. Antiwear properties of composite greases LITOL-24–magnesium hydrosilicate particles,. Inorganic Materials: Applied Research. 2018. Т. 9. № 1. С. 21-25.
DOI: 10.1134/s2075113318010057
Google Scholar
[13]
Breki A. and Nosonovsky, M. 2018. Ultraslow frictional sliding and the stick-slip transition. Appl. Phys. Lett. 113 (24), 241602.
DOI: 10.1063/1.5064820
Google Scholar
[14]
Breki, A., Nosonovsky, M. Einstein's Viscosity Equation for Nanolubricated Friction // Langmuir 2018, 34, 12968−12973.
DOI: 10.1021/acs.langmuir.8b02861
Google Scholar
[15]
Khrushchev MM, Berkovich E.S. Microhardness determined by the indentation method. M. - L., Publishing House of the Academy of Sciences of the USSR, (1943).
Google Scholar
[16]
Khrushchev MM, Berkovich E.S. PMT-2 and PMT-3 devices for microhardness testing. Institute of Engineering. Publishing house of the Academy of Sciences of the USSR, (1950).
Google Scholar
[17]
Glazov V.M., Vigdorovich V.N. Microhardness of metals and semiconductors. Second edition, revised and updated. Metallurgy Publishing House, 1969, 248p.
Google Scholar