Novel Actuators and Sensors with Tensegrity Architecture

Article Preview

Abstract:

This paper deals with the design of an apparatus based on tensegrity structures for the transmission of special solitary waves with adjustable profile into a material or structure, and the detection of such waves from a material or structure. The advantages of using tensegrity building blocks in place of granular materials or different structural units for the fabrication of novel nondestructive evaluation and monitoring tools and acoustic lenses are illustrated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-110

Citation:

Online since:

October 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Theocharis, N. Boechler, and C. Daraio. Nonlinear periodic phononic structures and granular crystals. Acoustic Metamaterials and Phononic Crystals. Springer, Berlin, Heidelberg, 2013. Pp. 217-251.

DOI: 10.1007/978-3-642-31232-8_7

Google Scholar

[2] S. Yang, J.H. Page, Z. Liu, M.L. Cowan, C.T. Chan and P. Sheng, Focusing of sound in a 3D phononic crystal. PPhys. Rev. Lett., 93(2) (2004) 024301.

DOI: 10.1103/physrevlett.93.024301

Google Scholar

[3] C. Daraio, V. F. Nesterenko, E. B. Herbold, and S. Jin. Tunability of solitary wave properties in one-dimensional strongly nonlinear phononic crystals., Phys. Rev. E, no. 2 (2006): 026610.

DOI: 10.1103/physreve.73.026610

Google Scholar

[4] A. Spadoni, C. Daraio, Generation and control of sound bullets with a nonlinear acoustic lens. Proc. Natl. Acad. Sci. U.S.A. 107(16) (2010) 7230-7234.

DOI: 10.1073/pnas.1001514107

Google Scholar

[5] C. Donahue, P. Anzel, L. Bonanomi, T. Keller, C. Daraio, Experimental realization of a nonlinear acoustic lens with a tunable focus, Appl. Phys. Lett., 104 (2014) 014103.

DOI: 10.1063/1.4857635

Google Scholar

[6] P. Rizzo, X. Ni, S. Nassiri, J. Vandenbossche, A solitary wave-based sensor to monitor the setting of fresh concrete, Sensors, 14(7) (2014) 12568-12584.

DOI: 10.3390/s140712568

Google Scholar

[7] Nesterenko, V.F., Dynamics of Heterogeneous Materials, Springer-Verlag, New York, (2001).

Google Scholar

[8] R.E. Skelton and M.C. de Oliveira. Tensegrity systems. Vol. 1. New York: Springer, (2009).

Google Scholar

[9] A.G. Tilbert, S. Pellegrino, Review of form-finding methods for tensegrity structures. Int J Space Struct, 18 (2011) 209–223.

Google Scholar

[10] F. Fraternali, A. Marino, T. Elsayed, A. Della Cioppa, On the structural shape optimization via variational methods and evolutionary algorithms. Mech. Adv. Mater. Struc., 18 (2011), 225-243.

DOI: 10.1080/15376494.2010.483319

Google Scholar

[11] F. Fraternali, G. Carpentieri, A. Amendola, On the mechanical modeling of the extreme softening/stiffening response of axially loaded tensegrity prisms. J. Mech. Phys. Solids., 74 (2014) 136-157.

DOI: 10.1016/j.jmps.2014.10.010

Google Scholar

[12] A. Amendola, G. Carpentieri, M. De Oliveira, R.E. Skelton, F. Fraternali, Experimental investigation of the softening-stiffening response of tensegrity prisms under compressive loading. Compos. Struct. 117 (2014) 234-243.

DOI: 10.1016/j.compstruct.2014.06.022

Google Scholar

[13] A. Amendola, E.H. Nava, R. Goodall, I. Todd, R.E. Skelton, F. Fraternali,  On the additive manufacturing and testing of tensegrity structures. Compos. Struct. 131 (2015) 66-71.

DOI: 10.1016/j.compstruct.2015.04.038

Google Scholar

[14] F. Fraternali, G. Carpentieri, M. Modano, F. Fabbrocino, R.E. Skelton, A tensegrity approach to the optimal reinforcement of masonry domes and vaults through fiber-reinforced composite materials. Compos. Struct. 134 (2015), 247-254.

DOI: 10.1016/j.compstruct.2015.08.087

Google Scholar

[15] Y. Ma, Q. Zhang, Y. Dobah, F. Scarpa, F. Fraternali, R. E. Skelton, J. Hong, Meta-tensegrity: Design of a tensegrity prism with metal rubber. Compos. Struct., 206 (2018) 644-657.

DOI: 10.1016/j.compstruct.2018.08.067

Google Scholar

[16] Q. Zhang, D. Zhang, Y. Dobah, F. Scarpa, F. Fraternali and R.E. Skelton, Tensegrity cell mechanical metamaterial with metal rubber. Appl. Phys. Lett., 113(3) (2018) 031906.

DOI: 10.1063/1.5040850

Google Scholar

[17] M. Modano, I. Mascolo, F. Fraternali, Z. Bieniek, Numerical and analytical approaches to the self-equilibrium problem of class θ = 1 tensegrity metamaterials. Front Mater, 5 (2018) 5.

DOI: 10.3389/fmats.2018.00005

Google Scholar

[18] I. Mascolo, A. Amendola, G. Zuccaro, L. Feo, and F. Fraternali, On the Geometrically Nonlinear Elastic Response of Class θ= 1 Tensegrity Prisms." Front. Mater. 5 (2018) 16.

DOI: 10.3389/fmats.2018.00016

Google Scholar

[19] F. Fraternali, L. Senatore, and C.Daraio, , Solitary waves on tensegrity lattices. J Mech Phys Solids 60 (2012) 1137-1144.

DOI: 10.1016/j.jmps.2012.02.007

Google Scholar

[20] F. Fraternali, G. Carpentieri, A. Amendola, R.E. Skelton, V. F. Nesterenko, Multiscale tunability of solitary wave dynamics in tensegrity metamaterials. Appl. Phys. Lett, 105 (2014) 201903.

DOI: 10.1063/1.4902071

Google Scholar

[21] Micheletti A., Ruscica G., Amendola A., Mascolo I., Fraternali F., On the solitary wave dynamics of tensegrity lattices with stiffening response: a numerical study, Proceedings of the 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, - COMPDYN (2019).

DOI: 10.7712/120119.7019.18382

Google Scholar

[22] C. Daraio, F. Fraternali , US Patent 8,616,328 (2013).

Google Scholar

[23] Han, D., Lu, Z., Chester, S. A., Lee, H., Micro 3D printing of a temperature-responsive hydrogel using projection micro-stereolithography. Sci Rep 8 (2018), (1963).

DOI: 10.1038/s41598-018-20385-2

Google Scholar