A Microscale Approach for Modelling Concrete Fatigue Damage-Mechanisms

Article Preview

Abstract:

A micro-scale-based approach for the numerical analysis of cement-based materials, subjected to low-and high-cycle fatigue actions, is presented in this paper. The constitutive model is aimed at describing the evolving microstructural changes caused by cyclic loading protocols. More specifically, statistically representative microscopic geometries are equipped with a fracture-based model combined with a continuous inelastic constitutive law accumulating damage induced by the cyclic stress. The plastic-damage-based model is formulated combining the concepts of fracture-energy theories and damage stiffness degradations, representing the key phenomena occurring in concrete under fatigue. The paper explores the potential of the technique for assessing fatigue microcracks formation and growth, and their influence on the macroscopic behavior.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-78

Citation:

Online since:

December 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.M. Simon and J.M. Chandra Kishen: International Journal of Fatigue Vol. 98 (2017), pp.1-13.

Google Scholar

[2] T. Makita and E. Brühwiler: Materials and structures Vol. 47 (2014), pp.475-491.

Google Scholar

[3] T. Makita and E. Brühwiler: International Journal of Fatigue Vol. 59 (2014), pp.145-152.

Google Scholar

[4] K. Wille, S. El-Tawil and A.E. Naaman: Cem. Concrete Composites Vol. 48 (2014), pp.53-66.

Google Scholar

[5] S. Abbas, M.L. Nehdi and M.A. Saleem: Int. J. Conc. Struc. Mater. Vol. 10 (2016), pp.271-295.

Google Scholar

[6] V. Afroughsabet, L. Biolzi and T. Ozbakkaloglu: J. Mater. Sci. Vol. 51 (2016), pp.6517-6551.

Google Scholar

[7] A. Wöhler: Zeitschrift für Bauwesen, Vol. XX (1870), pp.73-106.

Google Scholar

[8] D.A. Hordijk and H.W. Reinhardt: Experimental mechanics Vol. 33 (1993), pp.278-285.

Google Scholar

[9] P. Dobromil, C. Jan and P. Radomir: Procedia engineering Vol. 2 (2010), pp.203-212.

Google Scholar

[10] H.J. Lee and Y.R. Kim: Journal of engineering mechanics Vol. 124 (1998), pp.32-40.

Google Scholar

[11] A. Al-Gadhib, M. Baluch, A. Shaalan and A. Khan: Int. J. Damage Mech. Vol. 9 (2000), p.57.

Google Scholar

[12] J. Lubliner: Plasticity theory, Courier Corporation, (2008).

Google Scholar

[13] J.L. Chaboche and P.M. Lesne: Fatig. & Fract. of Engng. Mat. Struct. Vol. 11 (1988), pp.1-17.

Google Scholar

[14] S. Oller, O. Salomón and E. Oñate: Computational Mater. Sci. Vol. 32 (2005), pp.175-195.

Google Scholar

[15] A. Turon, J. Costa, P.P. Camanho and C.G. Dávila: Compos Part A Vol. 38 (2007), pp.2270-82.

Google Scholar

[16] A. Caggiano, G. Etse, L. Ferrara and V. Krelani: Computers & Struc Vol. 186 (2017), pp.22-34.

Google Scholar

[17] S. Harenberg, A. Caggiano, A. Koenig, D. Said, A. Gilka‐Bötzow, M. Schultz‐Cornelius, ... and E. Koenders: PAMM Vol. 18 (2018), p. e201800363.

DOI: 10.1002/pamm.201800363

Google Scholar

[18] J. Lemaitre: Nuclear Engineering and Design Vol. 80 (1984), pp.233-245.

Google Scholar

[19] B.H. Oh: Journal of Structural Engineering Vol. 112 (1986), pp.273-288.

Google Scholar