[1]
R. Markets, Increasing Investment in the Medical and Defense Sector,, in https://globenewswire.com/news-release/2017/02/13/916425/0/en/Global-6-52-Billion-Metal-Injection-Molding-MIM-Market-2014-2025, ed: GlobeNewswire News Room, 2017, pp. Global $6.52 Billion Metal Injection Molding (MIM) Market 2014-2025.
DOI: 10.1016/b978-0-08-102152-1.00001-5
Google Scholar
[2]
S. Supriadi, B. Suharno, T. Widjaya, S. Ayuningtyas, and E. Baek, Development of Superhydrophobic Material SS 17-4 PH for Bracket Orthodontic Application by Metal Injection Molding,, in IOP Conference Series: Materials Science and Engineering, 2018, p.012096.
DOI: 10.1088/1757-899x/299/1/012096
Google Scholar
[3]
S. Supriadi, D. Ferdian, G. Maulana, R. Hidayatullah, and B. Suharno, Debinding Rate Enhancement of 17-4 Precipitation Hardening Stainless Steel Solvent Debinding on Metal Injection Molding Process as the Material for Orthodontic Bracket,, in Materials Science Forum, 2018, pp.200-208.
DOI: 10.4028/www.scientific.net/msf.929.200
Google Scholar
[4]
S. Supriadi, D. Abdussalam, T. Heriyanto, B. Irawan, and B. Suharno, Transformation of orthodontics bracket geometry in metal injection molding process,, in IOP Conference Series: Materials Science and Engineering, 2018, p.012002.
DOI: 10.1088/1757-899x/432/1/012002
Google Scholar
[5]
W. B. James, Powder metallurgy methods and applications,, ASM Handbook, vol. 7, p.922, (2015).
Google Scholar
[6]
D. F. Heaney, Handbook of metal injection molding: Elsevier, (2012).
Google Scholar
[7]
I. Todd and A. Sidambe, Developments in metal injection moulding (MIM),, in Advances in Powder Metallurgy, ed: Elsevier, 2013, pp.109-146.
DOI: 10.1533/9780857098900.1.109
Google Scholar
[8]
S. Motaman, A. M. Mullis, R. F. Cochrane, I. N. McCarthy, and D. J. Borman, Numerical and experimental modelling of back stream flow during close-coupled gas atomization,, Computers & Fluids, vol. 88, pp.1-10, (2013).
DOI: 10.1016/j.compfluid.2013.08.006
Google Scholar
[9]
J. Strauss and S. Miller, Effect of gas propreties on powder yield produced by close-coupled gas atomization,, Advances in Powder Metallurgy and Particulate Materials--1997., vol. 1, p.5, (1997).
Google Scholar
[10]
D. Singh, S. Koria, and R. Dube, Study of free fall gas atomisation of liquid metals to produce powder,, Powder metallurgy, vol. 44, pp.177-184, (2001).
DOI: 10.1179/003258901666239
Google Scholar
[11]
E. Klar and P. K. Samal, Powder metallurgy stainless steels: processing, microstructures, and properties: ASM international, (2007).
DOI: 10.31399/asm.tb.pmsspmp.9781627083126
Google Scholar
[12]
N. Dombrowski and W. Johns, The aerodynamic instability and disintegration of viscous liquid sheets,, Chemical Engineering Science, vol. 18, pp.203-214, (1963).
DOI: 10.1016/0009-2509(63)85005-8
Google Scholar
[13]
D. Heaney, Designing for metal injection molding (MIM),, in Handbook of Metal Injection Molding, ed: Elsevier, 2012, pp.29-49.
DOI: 10.1533/9780857096234.1.29
Google Scholar
[14]
D. M. Goudar, V. Srivastava, and G. Rudrakshi, Effect of Atomization Parameters on Size and Morphology of Al-17Si Alloy Powder Produced by Free Fall Atomizer,, Engineering Journal, vol. 21, pp.155-168, (2017).
DOI: 10.4186/ej.2017.21.1.155
Google Scholar
[15]
B. Hausnerova, B. N. Mukund, and D. Sanetrnik, Rheological properties of gas and water atomized 17-4PH stainless steel MIM feedstocks: Effect of powder shape and size,, Powder Technology, vol. 312, pp.152-158, (2017).
DOI: 10.1016/j.powtec.2017.02.023
Google Scholar
[16]
N. Mathiazhagan, T. S. Kumar, V. Balasubramanian, and V. Gandhi, PERFORMANCE STUDY OF MEDIUM CARBON STEEL AND AUSTENITIC STAINLESS STEEL JOINTS: FRICTION WELDING PROCESS,, OXIDATION COMMUNICATIONS, vol. 38, pp.2123-2134, (2015).
Google Scholar
[17]
T. Oršulová, P. Palček, and J. Kúdelčík, Changes of the Magnetic Properties during Heat Treatment in AISI 304,, Periodica Polytechnica Transportation Engineering, (2017).
DOI: 10.3311/pptr.12102
Google Scholar