[1]
J. Liu, Q. Qu, Y. Liu, R. Li, B. Liu, Compressive properties of Al-Si-SiC composite foams at elevated temperatures, Journal of Alloys and Compounds, vol. 676 pp.239-244, (2016).
DOI: 10.1016/j.jallcom.2016.03.076
Google Scholar
[2]
C. Guo, T. Zou C. Shi, X. Yang, N. Zhao, E. Liu, C. He, Compressive properties and energy absorption of aluminum composite foams reinforced by in-situ generated MgAl2O4 whiskers, Materials Science and Engineering A, vol. 645, p.1 –7, (2015).
DOI: 10.1016/j.msea.2015.07.091
Google Scholar
[3]
J. Lia, C. Wua, H. Haob, Z. Liuc, Y. Yang, Basalt scale-reinforced aluminum foam under static and dynamic loads, Composite Structures, vol. 203, p.599–613, (2018).
DOI: 10.1016/j.compstruct.2018.07.070
Google Scholar
[4]
N.V. Ravi Kumar, N. Ramachandra Rao, B. Sudhakar , A.A. Gokhale, Foaming experiments on LM25 alloy reinforced with SiC particulates, Materials Science and Engineering A, vol. 527 p.6082–6090, (2010).
DOI: 10.1016/j.msea.2010.06.024
Google Scholar
[5]
K. Heim, F. García-Moreno, J. Banhart, Particle size and fraction required to stabilize aluminum alloy foams created by gas injection, Scripta Materialia, vol. 153, p.54–58, (2018).
DOI: 10.1016/j.scriptamat.2018.04.041
Google Scholar
[6]
N.V. Ravi Kumar, N. Ramachandra Rao, A.A. Gokhale, Effect of SiC particle content on foaming and mechanical properties of remelted and diluted A356/SiC composite, Materials Science and Engineering A, vol. 598, p.343–349, (2014).
DOI: 10.1016/j.msea.2014.01.050
Google Scholar
[7]
J. Yuan, Y. Li, Effects of cell wall property on compressive performance of aluminum foams, Transaction Nonferrous Metal Society China, vol. 25, p.1619−1625, (2015).
DOI: 10.1016/s1003-6326(15)63766-9
Google Scholar
[8]
S. Kumar, O.P. Pandey, Role of fine size zircon sand ceramic particle on controlling the cell morphology of aluminum composite foams, Journal of Manufacturing Processes, vol. 20, p.172–180, (2015).
DOI: 10.1016/j.jmapro.2015.08.006
Google Scholar
[9]
W. Deqing, S. Ziyuan, Effect of ceramic particles on cell size and wall thickness of aluminum foam, Materials Science and Engineering A, vol. 361, p.45–49, (2003).
DOI: 10.1016/s0921-5093(03)00557-4
Google Scholar
[10]
A. Byakova, Y. Bezim'yanny, S. Gnyloskurenko, T. Nakamura, Fabrication method for closed-cell aluminum foam with improved sound absorption ability, Procedia Materials Science, vol. 4, p.9 – 14, (2014).
DOI: 10.1016/j.mspro.2014.07.573
Google Scholar
[11]
P. Villars, A. Prince, H. Okamoto, Handbook of Ternary Alloy Phase Diagrams Materials Park, OH: ASM International, (1995).
Google Scholar
[12]
M. Gu, Y. Jin, Z. Mei, Z. Wu, R. Wu, Effects of reinforcement oxidation on the mechanical properties of SiC particulate reinforced aluminum composites, Materials Science and Engineering A, vol.252, p.188–198, (1998).
DOI: 10.1016/s0921-5093(98)00674-1
Google Scholar
[13]
Z. Shi, S. Ochiai, M. Gu, M. Hojo, J. Lee, The formation and thermostability of MgO and MgAl2O4 nanoparticles in oxidized SiC particle-reinforced Al-Mg composites, Applied Physics A, vol. 74, p.97–104, (2002).
DOI: 10.1007/s003390100844
Google Scholar
[14]
Z. Luoab, Y. Songa, S. Zhanga, A TEM study of the microstructure of SiCp/Al composite prepared by pressureless infiltration method, Scripta Materialia, vol. 45, pp.1183-1189, (2001).
DOI: 10.1016/s1359-6462(01)01148-4
Google Scholar
[15]
V. Sreekumar, R. Pillai, B. Pai, M. Chakraborty, Evolution of MgAl2O4 crystals in Al-Mg-SiO2 composites, Applied Physics A, vol. 90, p.745–752, (2008).
DOI: 10.1007/s00339-007-4357-2
Google Scholar
[16]
O. Kubaschewski, C.B. Alcock, Metallurgical Thermochemistry (Pergamon Press, Oxford, 5th edn., p.24, (1979).
Google Scholar