Selective Laser Melting of Magnesium

Article Preview

Abstract:

Magnesium-based materials find their use mainly in manufacturing light-weight constructions in motor-car, airspace industries, and biomedicine due to the low density. This paper provides an overview of introducing magnesium into SLM technology and describes searching experiments to prepare samples of magnesium powder МPF-4 (Russian State Standard 6001-79) conducted in the Laboratory of Yurga Institute of Technology. The study has determined appropriate parameters to synthesize a compact structure: laser output power 100 W, laser beam movement velocity 200 mm/s, scanning pitch 0.1 mm, modulation frequency of laser irradiation m = 2500 Hz, linear energy density Е=5 J/mm2, the process is to be carried out in argon shielding medium.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

144-149

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Mordike, T. Ebert, Magnesium: Properties–Applications–Potential, Mater. Sci. Eng. 302 (2001) 37–45.

Google Scholar

[2] Y. P. Sharkeev, Z. G. Kovalevskaya, M. A. Khimich, A. Yu. Eroshenko, A. A. Saprykin, E. A. Ibragimov, I. A. Glukhov, Features of the Ti-40Nb alloy prototype formation by 3D additive method, AIP Conference Proceedings. 1783 (2016) 020206.

DOI: 10.1063/1.4966500

Google Scholar

[3] N. A. Saprykina, A. A. Saprykin, E.A. Ibragimov, D.A. Arkhipova, Process Conditions of Forming the Surface Layer of Aluminum Powder Product by Layer-by-layer Laser Sintering, IOP Conference Series: Materials Science and Engineering. 140 (1) (2016) 012014.

DOI: 10.1088/1757-899x/140/1/012014

Google Scholar

[4] F. Froes, D. Eliezer, E. Aghion, The science, technology, and applications of magnesium, JOM. 50 (1998) 30–34.

DOI: 10.1007/s11837-998-0411-6

Google Scholar

[5] Y. Liu, Z. Yang, L. Tan, H. Li, Y. Zhang, An animal experimental study of porous magnesium scaffold degradation and osteogenesis, Braz. J. Med. Biol. Res. 47 (2014) 715-720.

DOI: 10.1590/1414-431x20144009

Google Scholar

[6] A. Shahini, M. Yazdimamaghani, K.J. Walker, M.A. Eastman, H. Hatami-Marbini, B.J. Smith, J.L. Ricci, S.V. Madihally, D. Vashaee, L. Tayebi, 3D conductive nanocomposite scaffold for bone tissue engineering, Int. J. Nanomedicine 9 (2014) 167.

DOI: 10.2147/ijn.s54668

Google Scholar

[7] T. Kraus, S.F. Fischerauer, A.C. Hänzi, P.J. Uggowitzer, J.F. Löffler, A.M. Weinberg, Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone, Acta Biomater. 8 (2012) 1230-1238.

DOI: 10.1016/j.actbio.2011.11.008

Google Scholar

[8] W. Sietsema, Animal models of cortical porosity, Bone. 17 (1995) 297-305.

Google Scholar

[9] Y. P. Sharkeev, A. I. Dmitriev, A. G. Knyazeva, A. Yu. Eroshenko, A. A. Saprykin, M. A. Khimich, E. A. Ibragimov, I. A. Glukhov, A. M. Mairambekova, A. Y. Nikonov, Selective laser melting of the Ti–(40–50) wt.% Nb alloy, High Temperature Material Processes. 21(2) (2017) 161-183.

DOI: 10.1615/hightempmatproc.2017024814

Google Scholar

[10] K.F. Farraro, K.E. Kim, S.L. Woo, J.R. Flowers, M.B. McCullough, Revolutionizing orthopaedic biomaterials: the potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering, J. Biomech. 47 (2014) 1979-1986.

DOI: 10.1016/j.jbiomech.2013.12.003

Google Scholar

[11] N. Kirkland, J. Lespagnol, N. Birbilis, M. Staiger, A survey of bio-corrosion rates of magnesium alloys, Corros. Sci. 52 (2010) 287-291.

DOI: 10.1016/j.corsci.2009.09.033

Google Scholar

[12] R. Tandon, D. Madan, Emerging applications for magnesium alloy powders, Powder Metall. 57 (2014) 236–241.

DOI: 10.1179/0032589914z.000000000196

Google Scholar

[13] M. Salahshoor, Y. Guo, Surface integrity of biodegradable magnesium–calcium orthopedic implant by burnishing, J. Mech. Behav. Biomed. Mater. 4 (2011) 1888-1904.

DOI: 10.1016/j.jmbbm.2011.06.006

Google Scholar

[14] K. Shimomura, Y. Moriguchi, C.D. Murawski, H. Yoshikawa, N. Nakamura, Osteochondral tissue engineering with biphasic scaffold: current strategies and techniques, Tissue Eng. B Rev. 20 (2014) 468-476.

DOI: 10.1089/ten.teb.2013.0543

Google Scholar

[15] N. A. Saprykina, A. A. Saprykin, D. A. Arkhipova, I.F. Borovikov, Improvement of the Sintered Surface and Bulk of the Product Via Differentiating Laser Sintering (Melting) Modes Source of the Document, IOP Conference Series: Materials Science and Engineering. 142 (1) (2016) 012089.

DOI: 10.1088/1757-899x/142/1/012089

Google Scholar

[16] Y. Li, D. Gu, Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder, Mater. Des. 63 (2014) 856–867.

DOI: 10.1016/j.matdes.2014.07.006

Google Scholar

[17] H. Zhang, D. Zhang, C. Ma, S. Guo, Improving mechanical properties and corrosion resistance of Mg-6Zn-Mn magnesium alloy by rapid solidification, Mater. Lett. 92 (2013) 45-48.

DOI: 10.1016/j.matlet.2012.10.051

Google Scholar

[18] S.L. Sing, J. An, W.Y. Yeong, F.E. Wiria, Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs, J. Orthop. Res. 34 (2016) 369-385.

DOI: 10.1002/jor.23075

Google Scholar

[19] E. Olakanmi, R.Cochrane, K. Dalgarno, A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties, Prog. Mater. Sci. 74 (2015) 401–477.

DOI: 10.1016/j.pmatsci.2015.03.002

Google Scholar

[20] A. A. Saprykin, N. A. Saprykina, D. A. Arkhipova, Influence of Shielding Gas and Mechanical Activation of Metal Powders on the Quality of Surface Sintered Layers, IOP Conf Ser: Mater Sci Eng. 125 (2016) 012016.

DOI: 10.1088/1757-899x/125/1/012016

Google Scholar

[21] A. A. Saprykin, E. A. Ibragimov , E. V. Babakova, Modeling the Temperature Fields of Copper Powder Melting in the Process of Selective Laser Melting, IOP Conference Series: Materials Science and Engineering. 142(1) (2016) 012061.

DOI: 10.1088/1757-899x/142/1/012061

Google Scholar

[22] G. Parande, V. Manakari, M. Gupta, Selective Laser Melting of Magnesium and Magnesium Alloy Powders: A Review. Metals. 7 (2017) 2.

DOI: 10.3390/met7010002

Google Scholar

[23] M.M. Savalani, L. Hao, R.A. Harris, Evaluation of CO2 and Nd: YAG lasers for the selective laser sintering of HAPEX (R), Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 220 (2006) 171-182.

Google Scholar

[24] B. Zheng, Y. Zhou, J.E. Smugeresky, J.M. Schoenung, E.J. Lavernia, Thermal behavior and microstructure evolution during laser deposition with laser-engineered net shaping: part II. Experimental investigation and discussion, Metall. Mater. Trans. A (Phys. Metall. Mater. Sci.). 39 (2008) 2237-2245.

DOI: 10.1007/s11661-008-9566-6

Google Scholar

[25] M.X. Zhang, H. Huang, K. Spencer, Y.N. Shi, Nanomechanics of Mg–Al intermetallic compounds, Surf. Coat. Technol. 204 (2010) 2118–2122.

DOI: 10.1016/j.surfcoat.2009.11.031

Google Scholar

[26] G. Abbas, Z. Liu, P. Skeldon, Corrosion behaviour of laser-melted magnesium alloys, Appl. Surf. Sci. 247 (2005) 347–353.

DOI: 10.1016/j.apsusc.2005.01.169

Google Scholar

[27] A. A. Saprykin, E. A. Ibragimov , E. V. Babakova, V. I. Yakovlev, Influence of mechanical activation of copper powder on physicomechanical changes in selective laser sintering products, AIP Conference Proceedings. 1683 (2015) 020199.

DOI: 10.1063/1.4932889

Google Scholar

[28] A. A. Saprykin, N. A. Saprykina, D. A. Arkhipova, The effect of layer-by-layer laser sintering on the quality of copper powder sintered surface layer, Proceedings - 2016 11th International Forum on Strategic Technology IFOST 2016. (2017) 244-246.

DOI: 10.1109/ifost.2016.7884096

Google Scholar