[1]
B. Mordike, T. Ebert, Magnesium: Properties–Applications–Potential, Mater. Sci. Eng. 302 (2001) 37–45.
Google Scholar
[2]
Y. P. Sharkeev, Z. G. Kovalevskaya, M. A. Khimich, A. Yu. Eroshenko, A. A. Saprykin, E. A. Ibragimov, I. A. Glukhov, Features of the Ti-40Nb alloy prototype formation by 3D additive method, AIP Conference Proceedings. 1783 (2016) 020206.
DOI: 10.1063/1.4966500
Google Scholar
[3]
N. A. Saprykina, A. A. Saprykin, E.A. Ibragimov, D.A. Arkhipova, Process Conditions of Forming the Surface Layer of Aluminum Powder Product by Layer-by-layer Laser Sintering, IOP Conference Series: Materials Science and Engineering. 140 (1) (2016) 012014.
DOI: 10.1088/1757-899x/140/1/012014
Google Scholar
[4]
F. Froes, D. Eliezer, E. Aghion, The science, technology, and applications of magnesium, JOM. 50 (1998) 30–34.
DOI: 10.1007/s11837-998-0411-6
Google Scholar
[5]
Y. Liu, Z. Yang, L. Tan, H. Li, Y. Zhang, An animal experimental study of porous magnesium scaffold degradation and osteogenesis, Braz. J. Med. Biol. Res. 47 (2014) 715-720.
DOI: 10.1590/1414-431x20144009
Google Scholar
[6]
A. Shahini, M. Yazdimamaghani, K.J. Walker, M.A. Eastman, H. Hatami-Marbini, B.J. Smith, J.L. Ricci, S.V. Madihally, D. Vashaee, L. Tayebi, 3D conductive nanocomposite scaffold for bone tissue engineering, Int. J. Nanomedicine 9 (2014) 167.
DOI: 10.2147/ijn.s54668
Google Scholar
[7]
T. Kraus, S.F. Fischerauer, A.C. Hänzi, P.J. Uggowitzer, J.F. Löffler, A.M. Weinberg, Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone, Acta Biomater. 8 (2012) 1230-1238.
DOI: 10.1016/j.actbio.2011.11.008
Google Scholar
[8]
W. Sietsema, Animal models of cortical porosity, Bone. 17 (1995) 297-305.
Google Scholar
[9]
Y. P. Sharkeev, A. I. Dmitriev, A. G. Knyazeva, A. Yu. Eroshenko, A. A. Saprykin, M. A. Khimich, E. A. Ibragimov, I. A. Glukhov, A. M. Mairambekova, A. Y. Nikonov, Selective laser melting of the Ti–(40–50) wt.% Nb alloy, High Temperature Material Processes. 21(2) (2017) 161-183.
DOI: 10.1615/hightempmatproc.2017024814
Google Scholar
[10]
K.F. Farraro, K.E. Kim, S.L. Woo, J.R. Flowers, M.B. McCullough, Revolutionizing orthopaedic biomaterials: the potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering, J. Biomech. 47 (2014) 1979-1986.
DOI: 10.1016/j.jbiomech.2013.12.003
Google Scholar
[11]
N. Kirkland, J. Lespagnol, N. Birbilis, M. Staiger, A survey of bio-corrosion rates of magnesium alloys, Corros. Sci. 52 (2010) 287-291.
DOI: 10.1016/j.corsci.2009.09.033
Google Scholar
[12]
R. Tandon, D. Madan, Emerging applications for magnesium alloy powders, Powder Metall. 57 (2014) 236–241.
DOI: 10.1179/0032589914z.000000000196
Google Scholar
[13]
M. Salahshoor, Y. Guo, Surface integrity of biodegradable magnesium–calcium orthopedic implant by burnishing, J. Mech. Behav. Biomed. Mater. 4 (2011) 1888-1904.
DOI: 10.1016/j.jmbbm.2011.06.006
Google Scholar
[14]
K. Shimomura, Y. Moriguchi, C.D. Murawski, H. Yoshikawa, N. Nakamura, Osteochondral tissue engineering with biphasic scaffold: current strategies and techniques, Tissue Eng. B Rev. 20 (2014) 468-476.
DOI: 10.1089/ten.teb.2013.0543
Google Scholar
[15]
N. A. Saprykina, A. A. Saprykin, D. A. Arkhipova, I.F. Borovikov, Improvement of the Sintered Surface and Bulk of the Product Via Differentiating Laser Sintering (Melting) Modes Source of the Document, IOP Conference Series: Materials Science and Engineering. 142 (1) (2016) 012089.
DOI: 10.1088/1757-899x/142/1/012089
Google Scholar
[16]
Y. Li, D. Gu, Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder, Mater. Des. 63 (2014) 856–867.
DOI: 10.1016/j.matdes.2014.07.006
Google Scholar
[17]
H. Zhang, D. Zhang, C. Ma, S. Guo, Improving mechanical properties and corrosion resistance of Mg-6Zn-Mn magnesium alloy by rapid solidification, Mater. Lett. 92 (2013) 45-48.
DOI: 10.1016/j.matlet.2012.10.051
Google Scholar
[18]
S.L. Sing, J. An, W.Y. Yeong, F.E. Wiria, Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs, J. Orthop. Res. 34 (2016) 369-385.
DOI: 10.1002/jor.23075
Google Scholar
[19]
E. Olakanmi, R.Cochrane, K. Dalgarno, A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties, Prog. Mater. Sci. 74 (2015) 401–477.
DOI: 10.1016/j.pmatsci.2015.03.002
Google Scholar
[20]
A. A. Saprykin, N. A. Saprykina, D. A. Arkhipova, Influence of Shielding Gas and Mechanical Activation of Metal Powders on the Quality of Surface Sintered Layers, IOP Conf Ser: Mater Sci Eng. 125 (2016) 012016.
DOI: 10.1088/1757-899x/125/1/012016
Google Scholar
[21]
A. A. Saprykin, E. A. Ibragimov , E. V. Babakova, Modeling the Temperature Fields of Copper Powder Melting in the Process of Selective Laser Melting, IOP Conference Series: Materials Science and Engineering. 142(1) (2016) 012061.
DOI: 10.1088/1757-899x/142/1/012061
Google Scholar
[22]
G. Parande, V. Manakari, M. Gupta, Selective Laser Melting of Magnesium and Magnesium Alloy Powders: A Review. Metals. 7 (2017) 2.
DOI: 10.3390/met7010002
Google Scholar
[23]
M.M. Savalani, L. Hao, R.A. Harris, Evaluation of CO2 and Nd: YAG lasers for the selective laser sintering of HAPEX (R), Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 220 (2006) 171-182.
Google Scholar
[24]
B. Zheng, Y. Zhou, J.E. Smugeresky, J.M. Schoenung, E.J. Lavernia, Thermal behavior and microstructure evolution during laser deposition with laser-engineered net shaping: part II. Experimental investigation and discussion, Metall. Mater. Trans. A (Phys. Metall. Mater. Sci.). 39 (2008) 2237-2245.
DOI: 10.1007/s11661-008-9566-6
Google Scholar
[25]
M.X. Zhang, H. Huang, K. Spencer, Y.N. Shi, Nanomechanics of Mg–Al intermetallic compounds, Surf. Coat. Technol. 204 (2010) 2118–2122.
DOI: 10.1016/j.surfcoat.2009.11.031
Google Scholar
[26]
G. Abbas, Z. Liu, P. Skeldon, Corrosion behaviour of laser-melted magnesium alloys, Appl. Surf. Sci. 247 (2005) 347–353.
DOI: 10.1016/j.apsusc.2005.01.169
Google Scholar
[27]
A. A. Saprykin, E. A. Ibragimov , E. V. Babakova, V. I. Yakovlev, Influence of mechanical activation of copper powder on physicomechanical changes in selective laser sintering products, AIP Conference Proceedings. 1683 (2015) 020199.
DOI: 10.1063/1.4932889
Google Scholar
[28]
A. A. Saprykin, N. A. Saprykina, D. A. Arkhipova, The effect of layer-by-layer laser sintering on the quality of copper powder sintered surface layer, Proceedings - 2016 11th International Forum on Strategic Technology IFOST 2016. (2017) 244-246.
DOI: 10.1109/ifost.2016.7884096
Google Scholar