Electrochemical Synthesis of Hydroxyapatite Nanosheet-Assembled Porous Structures with Bipolar Membrane

Article Preview

Abstract:

The porous nanostructured hydroxyapatite (HA) has the high specific surface area and loading capacity that is useful for enhancing bioactivity, sinterability, densification, and the capacity for loading the drug, protein, heavy metals, etc. For the first time, the bipolar membrane in electrochemical method was developed for the synthesis of hydroxyapatite nanosheet-assembled porous structures. The bipolar membrane was installed in the electrolysis cell to separate the cell into two chambers. The bipolar membrane prevented the OH- ions to move away from the cathode chamber and the H+ ions to go to the cathode chamber. In this condition, HA was formed in the cathode chamber while the other calcium phosphate was formed in the anode chamber. The pH increase of solution rapidly leads to more effective the formation of the nanostructured HA. The higher the electrolysis time and the current density the greater the tendency of nanostructured HA formation. The mechanism of HA hydroxyapatite nanosheet-assembled porous structures formation includes the agglomeration formation of the spherical-like particles, the formation of agglomeration nanosheet structures, and the formation of HA hydroxyapatite nanosheet-assembled porous structures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

124-131

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. W. Sun et al., Ultralong hydroxyapatite nanowires/collagen scaffolds with hierarchical porous structure, enhanced mechanical properties and excellent cellular attachment, Ceram. Int. 43(17) (2017) 15747-15754.

DOI: 10.1016/j.ceramint.2017.08.137

Google Scholar

[2] M. Ai, et al. Composite resin reinforced with silver nanoparticles–laden hydroxyapatite nanowires for dental application, Dent. Mater. 33(1) (2017) 12-22.

DOI: 10.1016/j.dental.2016.09.038

Google Scholar

[3] J. He, et al. Performance of novel hydroxyapatite nanowires in treatment of fluoride contaminated water, J. Hazard. Mater. 303 (2016) 119-130.

Google Scholar

[4] Y. D. Yu, Y. J. Zhu, C. Qi, Y. Y. Jiang, H. Li, J. Wu, Hydroxyapatite nanorod-assembled porous hollow polyhedra as drug/protein carriers, J. Colloid Interface Sci. 496 (2017) 416-424.

DOI: 10.1016/j.jcis.2017.02.041

Google Scholar

[5] H. Yang, et al. Solvothermal synthesis of hydroxyapatite nanorods with assistance of green polymer, Mater. Sci. Eng. C, 79 (2017) 9-14.

Google Scholar

[6] D. N. Thanh, P. Novák, J. Vejpravova, H. N. Vu, J. Lederer, T. Munshi, Removal of copper and nickel from water using nanocomposite of magnetic hydroxyapatite nanorods, J. Magn. Magn. Mater. 456 (2018) 451-460.

DOI: 10.1016/j.jmmm.2017.11.064

Google Scholar

[7] H. Wang, et al. The hydroxyapatite nanotube as a promoter to optimize the HDS reaction of NiMo/TiO2catalyst, Catal. Today, 259 (2016) 340-346.

DOI: 10.1016/j.cattod.2015.06.005

Google Scholar

[8] Q. Sun, J. T. Lou, F. Kang, J. F. Chen, J. X. Wang, Facile preparation of hydroxyapatite nanotubes assisted by needle-like calcium carbonate, Powder Technol. 261 (2014) 49-54.

DOI: 10.1016/j.powtec.2014.04.014

Google Scholar

[9] B. B. Chandanshive, P. Rai, A. L. Rossi, O. Ersen, D. Khushalani, Synthesis of hydroxyapatite nanotubes for biomedical applications, Mater. Sci. Eng. C, 33(5) (2013) 2981-2986.

DOI: 10.1016/j.msec.2013.03.022

Google Scholar

[10] B. Matovic, M. P. Djordjevic, J. Maletaskic, K. Yoshida, T. Yano, Preparation and properties of hydroxyapatite nano-spheres for immobilization of Sr isotopes, Energy Procedia, 131 (2017)140-145.

DOI: 10.1016/j.egypro.2017.09.419

Google Scholar

[11] H. H. Abo-Almaged, A. A. Gaber, Synthesis and characterization of nano-hydroxyapatite membranes for water desalination, Mater. Today Commun. 13 (2017) 186-191.

DOI: 10.1016/j.mtcomm.2017.10.002

Google Scholar

[12] S. Zhong, et al. Effects for rapid conversion from abalone shell to hydroxyapaptite nanosheets by ionic surfactants, Mater. Sci. Eng. C, 77 (2017) 708-712.

DOI: 10.1016/j.msec.2017.04.009

Google Scholar

[13] I. S. Yahia, M. Shkir, S. AlFaify, V. Ganesh, H. Y. Zahran, M. Kilany, Facile microwave-assisted synthesis of Te-doped hydroxyapatite nanorods and nanosheets and their characterizations for bone cement applications, Mater. Sci. Eng. C, 72 (2017) 472-480.

DOI: 10.1016/j.msec.2016.11.074

Google Scholar

[14] X. Y. Zhao, et al. Hydroxyapatite nanosheet-assembled microspheres: Hemoglobin-templated synthesis and adsorption for heavy metal ions, J. Colloid Interface Sci. 416 (2014) 11-18.

DOI: 10.1016/j.jcis.2013.10.034

Google Scholar

[15] C. Qi, Y.-J. Zhu, B.-Q. Lu, X.-Y. Zhao, J. Zhao, F. Chen, Hydroxyapatite nanosheet-assembled porous hollow microspheres: DNA-templated hydrothermal synthesis, drug delivery and protein adsorption, J. Mater. Chem. 22(42) (2012) 22642.

DOI: 10.1039/c2jm35280j

Google Scholar

[16] X.-Y. Zhao, Y.-J. Zhu, F. Chen, B.-Q. Lu, J. Wu, Nanosheet-assembled hierarchical nanostructures of hydroxyapatite: surfactant-free microwave-hydrothermal rapid synthesis, protein/DNA adsorption and pH-controlled release, Cryst. Eng. Comm. 15(1) (2013) 206-212.

DOI: 10.1039/c2ce26315g

Google Scholar

[17] M. M. Taheri, et al. Surfactant-assisted hydrothermal synthesis of Fluoridated Hydroxyapatite nanorods, Ceram. Int. 41(8) (2015) 9867-9872.

DOI: 10.1016/j.ceramint.2015.04.061

Google Scholar

[18] P. Shi, et al. Hydroxyapatite nanorod and microsphere functionalized with bioactive lactoferrin as a new biomaterial for enhancement bone regeneration, Colloids Surfaces B Biointerfaces, 155 (2017) 477-486.

DOI: 10.1016/j.colsurfb.2017.04.042

Google Scholar

[19] P. Kubasiewicz-Ross, et al. New nano-hydroxyapatite in bone defect regeneration: A histological study in rats, Ann. Anat. 213 (2017) 83-90.

DOI: 10.1016/j.aanat.2017.05.010

Google Scholar

[20] M. N. Hassan, M. M. Mahmoud, A. A. El-Fattah, S. Kandil, Microwave-assisted preparation of Nano-hydroxyapatite for bone substitutes, Ceram. Int. 42(3) (2016) 3725-3744.

DOI: 10.1016/j.ceramint.2015.11.044

Google Scholar

[21] A. Szcześ, L. Hołysz, E. Chibowski, Synthesis of hydroxyapatite for biomedical applications, Adv. Colloid Interface Sci. 249 (2017) 321-330.

DOI: 10.1016/j.cis.2017.04.007

Google Scholar

[22] E. J. M. Edralin, J. L. Garcia, F. M. dela Rosa, E. R. Punzalan, Sonochemical synthesis, characterization and photocatalytic properties of hydroxyapatite nano-rods derived from mussel shells, Mater. Lett. 196 (2017) 33-36.

DOI: 10.1016/j.matlet.2017.03.016

Google Scholar

[23] N. Liu, et al. Nano-hydroxyapatite as an Efficient Polysulfide Absorbent for High-performance Li-S Batteries, Electrochim. Acta, 215 (2016) 162-170.

DOI: 10.1016/j.electacta.2016.08.083

Google Scholar

[24] L. Pei, T. Tsuzuki, A. Dodd, M. Saunders, Synthesis of calcium chlorapatite nanoparticles and nanorods via a mechanically-induced solid-state displacement reaction and subsequent heat treatment, Ceram. Int. 43(14) (2017) 11410-11414.

DOI: 10.1016/j.ceramint.2017.05.350

Google Scholar

[25] D. Mehta, P. Mondal, V. K. Saharan, S. George, Synthesis of hydroxyapatite nanorods for application in water defluoridation and optimization of process variables: Advantage of ultrasonication with precipitation method over conventional method, Ultrason. Sonochem. 37 (2017) 56-70.

DOI: 10.1016/j.ultsonch.2016.12.035

Google Scholar

[26] M. Chahkandi, Mechanism of Congo red adsorption on new sol-gel-derived hydroxyapatite nano-particle, Mater. Chem. Phys. 202 (2017) 340-351.

DOI: 10.1016/j.matchemphys.2017.09.047

Google Scholar

[27] S. Akter Jahan, M. Y. A. Mollah, S. Ahmed, M. Abu Bin Hasan Susan, Nano-Hydroxyapatite Prepared from Eggshell-Derived Calcium-Precursor using Reverse Microemulsions as Nanoreactor, Mater. Today Proc. 4(4) (2017) 5497-5506.

DOI: 10.1016/j.matpr.2017.06.005

Google Scholar

[28] J. S. Cho, S. H. Rhee, Formation mechanism of nano-sized hydroxyapatite powders through spray pyrolysis of a calcium phosphate solution containing polyethylene glycol, J. Eur. Ceram. Soc. 33(2) (2013) 233-241.

DOI: 10.1016/j.jeurceramsoc.2012.08.029

Google Scholar

[29] S. K. Ghosh, S. K. Roy, B. Kundu, S. Datta, D. Basu, Synthesis of nano-sized hydroxyapatite powders through solution combustion route under different reaction conditions, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 176(1) (2011) 14-21.

DOI: 10.1016/j.mseb.2010.08.006

Google Scholar

[30] A. Nur, H. Setyawan, A. Widjaja, I. W. Lenggoro, Electrochemical processes for the formation of hydroxyapatite powders, Bull. Chem. React. Eng. Catal. 9(3) (2014) 168-174.

DOI: 10.9767/bcrec.9.3.6686.168-174

Google Scholar

[31] A. Nur, H. Setyawan, An experimental and theoretical investigation of the formation of hydroxyapatite particles prepared by an electrochemical method, J. Chem. Eng. Japan, 49(2) (2016) 144-151.

DOI: 10.1252/jcej.15we130

Google Scholar