Plasma Surface Modification of Glass Fibre Sizing for Manufacturing Polymer Composites

Article Preview

Abstract:

Bundles or fabrics of sized glass fibres were treated by a dielectric barrier discharge plasma in a He/CF4 gas mixture at atmospheric pressure with and without ultrasonic irradiation. The plasma treatment introduced fluorine both inside and outside of the fibre bundle, decreasing wetting of glycerol. Ultrasonic irradiation markedly increased the fluorine content as well as the silicon, calcium, and aluminium contents, indicating simultaneous fluorination and preferential etching of organic components. It is indicated that plasma treatment in a He/CF4 gas mixture can be used for controlling the surface properties of glass fibre bundles, and that ultrasonic irradiation can enhance functionalization and etching.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

159-164

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Information on https://www.sintef.no/projectweb/dacomat/.

Google Scholar

[2] Y. Kusano, B.F. Sørensen, T.L. Andersen, F. Leipold, Adhesion improvement of glass-fibre-reinforced polyester composites by gliding arc discharge treatment, J. Adhesion 89(6) (2013) 433-459.

DOI: 10.1080/00218464.2013.759063

Google Scholar

[3] M. Rask, B.F. Sørensen, Determination of the J integral for laminated double cantilever beam specimens: The curvature approach, Eng. Fract. Mech. 96 (2012) 37-48.

DOI: 10.1016/j.engfracmech.2012.06.017

Google Scholar

[4] S. Goutianos, B.F. Sørensen, Fracture resistance enhancement of layered structures by multiple cracks, 151 (2016) 92-108.

DOI: 10.1016/j.engfracmech.2015.10.036

Google Scholar

[5] J.L. Thomason, Glass Fibre Sizing: A review of the Scientific Literature (2012).

Google Scholar

[6] M. Kogoma, M. Kusano, Y. Kusano (Eds.), Generation and Applications of Atmospheric Pressure Plasmas, NOVA Science Publishers, Inc., New York, (2011).

Google Scholar

[7] Y. Kusano, Atmospheric pressure plasma processing for polymer adhesion – a review, J. Adhesion 90(9) (2014) 755-777.

DOI: 10.1080/00218464.2013.804407

Google Scholar

[8] M Goldman, A. Goldman, R.S. Sigmond, The corona discharge, its properties and specific uses. Pure & Appl. Chem. 57(9) (1985) 1353-1362.

DOI: 10.1351/pac198557091353

Google Scholar

[9] U. Kogelschatz, Dielectric-barrier Discharges: Their History, Discharge Physics, and Industrial Applications, Plasm. Chem. Plasm. Proc. 23(1) (2003) 1-46.

Google Scholar

[10] H. Mortensen, Y. Kusano, F. Leipold, N. Rozlosnik, P. Kingshott, B.F. Sørensen, B. Stenum, H. Bindslev, Modification of glassy carbon surfaces by an atmospheric pressure cold plasma torch, Jpn. J. Appl. Phys. 45(10B) (2006) 8506-8511.

DOI: 10.1143/jjap.45.8506

Google Scholar

[11] A. Fridman, S. Nester, L.A. Kennedy, A. Saveliev, O. Mutaf-Yardimci, Gliding arc gas discharge, Prog. Energy Combustion Sci. 25 (1999) 211–231.

DOI: 10.1016/s0360-1285(98)00021-5

Google Scholar

[12] S. Teodoru, Y. Kusano, N. Rozlosnik, P.K. Michelsen, Continuous plasma treatment of ultra high molecular weight polyethylene (UHMWPE) fibres for adhesion improvement, Plasm. Proc. Polym. 6 (2009) S375-S381.

DOI: 10.1002/ppap.200930906

Google Scholar

[13] Y. Kusano, S.V. Singh, A. Bardenshtein, N. Krebs, N. Rozlosnik, (2010) Plasma surface modification of glass fibre reinforced polyester enhanced by ultrasonic irradiation, J. Adhesion Sci. Technol. 24 (2010) 1831-1839.

DOI: 10.1163/016942410x507605

Google Scholar

[14] Y. Kusano, K. Norrman, S.V. Singh, F. Leipold, P. Morgen, A. Bardenshtein, N. Krebs, Ultrasound enhanced 50 Hz plasma treatment of glass-fiber-reinforced polyester at atmospheric pressure, J. Adhesion Sci. Technol. 27(7) (2013) 825-833.

DOI: 10.1080/01694243.2012.727156

Google Scholar

[15] Y. Kusano, S.V. Singh, K. Norrman, J. Drews, F. Leipold, N. Rozlosnik, A. Bardenshtein, N. Krebs, Ultrasound enhanced plasma treatment of glass-fibre-reinforced polyester in atmospheric pressure air for adhesion improvement, J. Adhesion 87 (2011) 720-731.

DOI: 10.1080/00218464.2011.596798

Google Scholar

[16] Y. Kusano, J.-J. Zhu, A. Ehn, Z.-S. Li, M. Aldén, M. Salewski, F. Leipold, Observation of gliding arc surface treatment, Surf. Eng. 31(4) (2015) 282-288.

DOI: 10.1179/1743294414y.0000000429

Google Scholar

[17] J. Drews, Y. Kusano, F. Leipold, A. Bardenshtein, N. Krebs, Ozone production in a dielectric barrier discharge with ultrasonic irradiation, Ozone: Sci. Eng. 33 (2011) 483-488.

DOI: 10.1080/01919512.2011.616153

Google Scholar

[18] Y. Kusano, J. Drews, F. Leipold, A. Fateev, A. Bardenshtein, N. Krebs, Influence of ultrasonic irradiation on ozone production in a dielectric barrier discharge. J. Phys. Conf. Series 406 (2012) 012006.

DOI: 10.1088/1742-6596/406/1/012006

Google Scholar

[19] G. Beamson, D. Briggs, High resolution XPS of organic polymers, the Scienta ESCA300 database, Wiley, Chichester, (1992).

DOI: 10.1016/0142-9612(94)90060-4

Google Scholar

[20] Y. Kusano, S.V. Singh, P.K. Michelsen, Plasma generation induced by triboelectrification, Proceedings of the conference, Phenomena in Ionized Gases, ICPIG XXIX Cancún, México (2009).

Google Scholar