Preparation and Characterization of Surface-Modified Nanocellulose Fibers for Water-Based Coating Application

Article Preview

Abstract:

Nanocellulose fibers (NCF) is a renewable biodegradable polymer in nature. It has extensively interest as a reinforcement material in nanocomposites due to its nanoscale advantages. However, the efficiency of NCF dispersion in polymer matrix has limitation due to its self-agglomeration.The objective of this research was to prepare surface-modified NCF using three different acids; succinic anhydride, phthalic anhydride and citric acid. The molar ratios of acid to anhydroglucose units in NCF used in this work were 6:1, 8:1 and 10:1. The effects of acid types and molar ratios toward physical properties were studied. The results showed that succinic anhydride-modified NCF provided the highest DS range from 0.46-0.86. Dispersion of succinic anhydride-modified NCF provided good stability in water for 30 days. The succinic anhydride-modified NCF of 1:6 molar ratio is suitable for emulsion coating application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-26

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. K. Mishra, A. Sabu and S. K. Tiwari, Materials chemistry and the futurist eco–friendly applications of nanocellulose: Satatus and prospect, J. Saudi Chem. Soc., 22, 949-978.

DOI: 10.1016/j.jscs.2018.02.005

Google Scholar

[2] P. Phanthong, P. Reubroycharoen, X. Hao, G. Xu, A. Abudula and G. Guan, Nanocellulose: extraction and application, Chem. Soc. Rev., 2018, 1: 32-43.

DOI: 10.1016/j.crcon.2018.05.004

Google Scholar

[3] K. Jedver and T. Heinze, Cellulose modification and shaping-a review, Polym. Eng., 2017, 37: 845-860.

Google Scholar

[4] M. T. Islam, M. M. Alam and M. Zoccola, Review on modification of nanocellulose for application in composites, Int. J. Innovative Res. Sci. Eng. Technol., 2013, 2: 5444-5451.

Google Scholar

[5] H. Yano, H. Omura, Y. Honma, H. Okumura, H. Sano and F. Nakatsubo, Designing cellulose nanofiber surface for high density polyethylene reinforcement, Cellul., 2018, 25: 3351-3362.

DOI: 10.1007/s10570-018-1787-2

Google Scholar

[6] H. J. Hong, J. S. Lim, J. Y. Hwang, M. Kim, H. S. Jeong and M. S. Park, Carboxymethlyated cellulose nanofibrils (CMCNFs) embedded in polyurethane foam as a modular adsorbent of heavy metal ions, Carbohydr. Polym., 195: 136-142.

DOI: 10.1016/j.carbpol.2018.04.081

Google Scholar

[7] P. Phanthong, P. Reubroycharoen, X. Hao, G. Xu, A. Abudula and G. Guan, Nanocellulose: extraction and application, Chem. Soc. Rev., 2018, 1: 32-43.

DOI: 10.1016/j.crcon.2018.05.004

Google Scholar

[8] M. Elomaa, T. Asplund, P. Soininem, R. Laatikainen, S. Peltonen, S. Hyvarinen and A. Urtti, Determination of the degree of substitution of acetylated starch by hydrolysis, 1H NMR and TGA/IR, Carbohydr. Polym., 57:261-267.

DOI: 10.1016/j.carbpol.2004.05.003

Google Scholar

[9] M. Fan, D. Dai and B. Huang, Fourier Transform Infrared Spectroscopy for Natural, editied by S. M. Salih Fibres Fourier Transform–Materials Analysis, IntechOpen.

DOI: 10.5772/35482

Google Scholar

[10] L. Du, T. Zhong, M. P. Wolcott, Y. Zhang, C. Qi, B. Zhao, J. Wang and Z. Yu, Dispersing and stabilizing cellulose nanoparticles in acrylic resin dispersions with unreduced tranparency and changed rheological property, Cellul., 2018, 25: 2435-2450.

DOI: 10.1007/s10570-018-1739-x

Google Scholar

[11] M. C. Li, Q. Wu, K. Song, S. Y. Lee, Q. Yan and Y. Wu, Cellulose nanoparticles: Structure–morphology–rheology relationship, ACS Sustainable Chem. Eng., 3: 821-832.

DOI: 10.1021/acssuschemeng.5b00144

Google Scholar