Ecological Fickerts Used in the Dimension Stones Polishing Reinforced with Silica from the Rice Hull Ash

Article Preview

Abstract:

The processing stages of the dimension stones industry uses inputs mainly from petroleum-derived chemicals that can cause damages to the environment and to the human health. Therefore, there is a need to develop more ecological and sustainable technologies aiming to replace the conventional inputs by less aggressive ones. From this, ecological fickerts made from polyurethane castor oil resin (Ricinus communis L.), silicon carbide (SiC), silica from rice hull ash (RHA) and synthetic diamonds were developed in order to compare them with the epoxy resin fickerts currently used in industry. For such, each half of a Brazilian granite slab was polished using each different type of fickerts and the gloss measures results were compared. It was found that the side of the slab polished using the ecological fickerts presented brightness values about 10 Gloss Units (GU) greater than the other side polished with the conventional abrasives. In addition, the ecological fickerts presented lower wear values, and consequently lower mass loss compared to the conventional ones. These results indicate that the ecological fickerts are a good alternative to the dimension stones polishing, even considering sustainability aspects and more eco-efficiency inputs materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

66-74

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. S. Braga; D. C. Buzzi, M. C. L. Couto; L. C. Caracterização ambiental de lamas de rochas ornamentais. Eng. Sanit. Ambient. 15 (2010) 237–244.

DOI: 10.1590/s1413-41522010000300006

Google Scholar

[2] ASTM-American Society for Testing and Materials. Standard terminology relating to dimension stone. ASTM C119/16. (2016).

Google Scholar

[3] I. Ashmole, M. Motloung, Dimension stone: the latest trends in exploration and production technology, in: Proceedings of the International Conference on Surface Mining. (2008) 5–8.

Google Scholar

[4] Careddu, N, Rough surface finishing of stone-faced sandwich panels using high pressure waterjet. J. Mater. Civ. Eng. 24 (2012) 907–915.

DOI: 10.1061/(asce)mt.1943-5533.0000468

Google Scholar

[5] L. Nogami, A. B. Paraguassú, J. E. Rodrigues, Fixação de placas de rochas ornamentais: estudo da aderência com argamassa colante. Minerva magazine. 5 (2008) 45-42.

DOI: 10.11606/d.18.2007.tde-07052008-085848

Google Scholar

[6] F. Xi, D. Zhou, Modeling surface roughness in the stone polishing process. I. J. of Machine Tools and Manufacture. 45 (2005) 365-372.

DOI: 10.1016/j.ijmachtools.2004.09.016

Google Scholar

[7] I. M. Hutchings, K. Adachi, Y.Xu, E. Sánchez, M.J. Ibánez, M.F. Quereda, Analysis and laboratory simulation of an industrial polishing process for porcelain tiles, J. Eur Ceram Soc. 25 (2005)3151–3156.

DOI: 10.1016/j.jeurceramsoc.2004.07.005

Google Scholar

[8] P.F. Almeida, V.M. Ponciano, L. L. L. Silveira, E. P. Sichieri. Insertion of silicon carbide as cutting element in ecological fickerts for dimension stone polishing. Proceedings of VI Global Stone Congress. (2018) 239-242.

DOI: 10.4028/www.scientific.net/kem.848.28

Google Scholar

[9] M.R. Beserra, J.A Schiavini, W.C. Rodrigues, C.S.S. Pereira, Bisfenol A: Sua utilização e a atual polêmica em relação aos possíveis danos à saúde humana. TCCEN E-publishing. 5 (2012) 37-46.

DOI: 10.21727/teccen.v5i1.108

Google Scholar

[10] J. F. Mendoza, M. Feced, G. Feijoo, A. Josa, X. Gabarrel, J. Rieradevall, Life-cycle assessment of cladding products: A comparison of aluminum, brick, granite, limestone, and precast concrete, Int J Life Cycle Assess. 19 (2014) 153-165.

DOI: 10.1007/s11367-013-0637-6

Google Scholar

[11] M.C. Aydin, E. Isik, A. E. Ulu, Emerging sustainable/green cleaning products: health and environmental risks. J Current Construction Issues. 11(2016) 174-182.

Google Scholar

[12] L.L.L. Silveira, Patent BR 10 2012 032157-2 A2, (2015).

Google Scholar

[13] V.M.F. Leitão, L.L.L. Silveira, Ecoabrasivo confeccionado com resina vegetal e carbeto de silício: uma inovação para o setor de rochas ornamentais In: Proceedings of the XXII Scientific Initiation Journey. Rio de Janeiro, Brazil. 21 (2014), 4p.

Google Scholar

[14] W. F. G. Dorigo, L. L. L. Silveira, Contribuição da sílica oriunda da queima da palha do arroz no aumento da resistência à abrasão de compósito vegetal. In: Proceedings of the XXIV Scientific Initiation Journey. Rio de Janeiro, Brazil. 24 (2016), 4p.

DOI: 10.19146/pibic-2016-51377

Google Scholar

[15] V.P. Della, I. Kühn, D. Hotza, Characterization of rice hull ash for use as raw material in the manufacture of silica refractory. Química Nova, 24(6) (2001) 778-772.

Google Scholar

[16] I. J. Fernandes, D. Calheiro, E.C.A. Santos, T.L.A.C. Rocha and C.A.M. Moraes, Comparação de cinza da casca de arroz e sílica comercial como carga em compósitos poliméricos. In: Proceedings of XXI CBECIMAT. (2014) 2665-2672.

DOI: 10.11606/t.85.2009.tde-23092009-145638

Google Scholar

[17] ASTM-American Society for Testing and Materials. Standard guide for conducting wear tests using a rotary platform abraser. ASTM G195/18. (2018).

DOI: 10.1520/g0195

Google Scholar