Production of Foamed Concrete in a Planetary Ball Mill

Article Preview

Abstract:

Nowadays, the type of foamed concrete performs a group of cemented composite materials that can compete with conventionally used autoclaved aerated concrete. Improving microstructure of the foamed concrete by inventive mixing technology allows to homogenizate the mix of foamed concrete. This original research is applied to inspection on mixing technology of foamed concrete by using a planetary ball mill. The objective of this paper is to clarify the correlation between physical-mechanical properties and intensive mixing time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

311-315

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Zhang, N. Jiang, H. Li, C. Wu, Study on Mix Proportion Design of Cement Foam Concrete, Mater. Sci. Eng. 439 (2018) 1-6.

DOI: 10.1088/1757-899x/439/4/042053

Google Scholar

[2] E. Namsone, G. Sahmenko, E. Namsone, Research on Properties of High Performance Foamed Concrete, Key Eng. Mater. 88 (2018) 13-22.

DOI: 10.4028/www.scientific.net/kem.788.13

Google Scholar

[3] E. Namsone, G. Sahmenko, A. Korjakins, Durability Properties of High Performance Foamed Concrete, Proc. Eng. 172 (2017) 760-767.

DOI: 10.1016/j.proeng.2017.02.120

Google Scholar

[4] E. Namsone, G. Sahmenko, E. Namsone, A. Korjakins, Reduction of the Capillary Water Absorption of Foamed Concrete by Using the Porous Aggregate, Mat. Sci. Eng. 251 (2017)1-9.

DOI: 10.1088/1757-899x/251/1/012030

Google Scholar

[5] A. Tanveer, K. Jagdeesh, F. Ahmed, Foam Concrete, Int. J. Civ. Eng. Res. 8 (2017) 1-14.

Google Scholar

[6] X. Tan, W. Chen, Y. Hao, X. Wang, Experimental Study of Ultralight (< 300 kg/m3) Foamed Concrete, Adv. Mater. Sci. Eng. 8 (2014) 1-7.

Google Scholar

[7] E. Namsone, G. Sahmenko, E. Namsone, A. Korjakins, Thermal Conductivity and Frost Resistance of Foamed Concrete with Porous Aggregate, Environment. Technology. Resources. Proceedings of the 11th International Scientific and Practical Conference. 3 (2017) 222-228.

DOI: 10.17770/etr2017vol3.2625

Google Scholar

[8] J. Ding, Z. Li, Effects of Metakaolin and Silica Fume on Properties of Concrete, ACI Mater. J. 99 (2002) 393-398.

Google Scholar

[9] Z. Zhang, J.L. Provis, A. Reid, H. Wang, Mechanical, Thermal Insulation, Thermal Resistance and Acoustic Absorption Properties of Geopolymer Foam Concrete, Cem. Concr. Compos. 62 (2015) 97-105.

DOI: 10.1016/j.cemconcomp.2015.03.013

Google Scholar

[10] C. Hwang, V. Tran, A Study of the Properties of Foamed Lightweight Aggregate for Self-Consolidating Concrete, Constr. Build. Mater. 87 (2015) 78-85.

DOI: 10.1016/j.conbuildmat.2015.03.108

Google Scholar

[11] A.Just, B. Middendorf, Microstructure of High-Strength Foam Concrete, Mater. Charact. 60 (2009) 741-748.

DOI: 10.1016/j.matchar.2008.12.011

Google Scholar

[12] Retsch GmbH, General Catalogue,, (2017).

Google Scholar

[13] Information on http://www.understandingnano.com/nanomaterial-synthesis-ball-milling.html.

Google Scholar

[14] C. Krämer, T.L. Kowald, R.H.F. Trettin, Pozzolanic Hardened Three-Phase-Foams, Cem. Concr. Compos. 62 (2015) 44-51.

DOI: 10.1016/j.cemconcomp.2015.06.002

Google Scholar

[15] E. Fomenko, N. Anshits, Characterization of Fly Ash Cenospheres Produced from the Combustion of Ekibastuz Coal, Energy and Fuels. 29 (2015) 5390-5403.

DOI: 10.1021/acs.energyfuels.5b01022

Google Scholar

[16] V.S. Vassilev, R. Menendez, Phase-Mineral and Chemical Composition of Coal Fly Ashes, Fuel. 82 (2005) 973-991.

DOI: 10.1016/j.fuel.2004.11.021

Google Scholar