[1]
ZHANG, Changsuo; HU, Feng; ZOU, Steve. Effects of blast induced vibrations on the fresh concrete lining of a shaft. Tunnelling and underground space technology, 2005, 20(4): 356-361. https://.
DOI: 10.1016/j.tust.2005.01.001
Google Scholar
[2]
Samouh, H.; Rozière, E.; Wisniewski, V.; Loukili, A. Consequences of longer sealed curing on drying shrinkage, cracking and carbonation of concrete. Cem. Concr. Res. 2017, 95, 117–131. https://.
DOI: 10.1016/j.cemconres.2017.02.019
Google Scholar
[3]
Klemczak, B.; Batog,M.; Pilch,M.; Z˙mij, A. Analysis of cracking risk in early age mass concrete with different aggregate types. Procedia Eng. 2017, 193, 234–241. https://.
DOI: 10.1016/j.proeng.2017.06.209
Google Scholar
[4]
Larson, M. Thermal Crack Estimation in Early Age Concrete: Models and Methods for Practical Application. Ph.D. Thesis, Lulea University of Technology, Luleå, Sweden, (2003).
Google Scholar
[5]
AHMAD, Omar Asad; AWWAD, Mohammed. The effects of polypropylene fibers additions on compressive and tensile strengths of concrete. Int. J. of Civil and Environmental Engineering, 2015, 37(1): 1365-1372.
Google Scholar
[6]
D.J. Shen, J.L. Jiang, W.T. Wang, J.X. Shen, G.Q. Jiang, Tensile creep and cracking resistance of concrete with different water-to-cement ratios at early age, Constr. Build. Mater. 2017,146: 410–418.
DOI: 10.1016/j.conbuildmat.2017.04.056
Google Scholar
[7]
D.J. Shen, J.L. Jiang, M.Y. Zhang, P.P. Yao, G.Q. Jiang, Tensile creep and cracking potential of high performance concrete internally cured with super absorbent polymers at early age, Constr. Build. Mater. 2018,165: 451–461.
DOI: 10.1016/j.conbuildmat.2017.12.136
Google Scholar
[8]
E.T. Dawood, M. Ramli, Development of high strength flowable mortar with hybrid fibre, Constr. Build. Mater. 2010, 24 :1043–1050.
DOI: 10.1016/j.conbuildmat.2009.11.013
Google Scholar
[9]
Shen, D., Liu, C., Li, C., Zhao, X., & Jiang, G. Influence of Barchip fiber length on early-age behavior and cracking resistance of concrete internally cured with super absorbent polymers. Construction and Building Materials, 2019, 214: 219-231.
DOI: 10.1016/j.conbuildmat.2019.03.209
Google Scholar
[10]
Switek-Rey, A.; Denarié, E.; Brühwiler, E. Early age creep and relaxation of UHPFRC under low to high tensile stresses. Cem. Concr. Res. 2016, 83: 57–69.
DOI: 10.1016/j.cemconres.2016.01.005
Google Scholar
[11]
Zhu, H.; Li, Q.; Hu, Y. Self-developed testing system for determining the temperature behavior of concrete. Materials, 2017, 10:419.
DOI: 10.3390/ma10040419
Google Scholar
[12]
Liu, L., Ouyang, J., Li, F., Xin, J., Huang, D., & Gao, S. Research on the Crack Risk of Early-Age Concrete under the Temperature Stress Test Machine. Materials, 2018,11(10):1822.
DOI: 10.3390/ma11101822
Google Scholar
[13]
D.J. Shen, H.F. Shi, X.J. Tang, Y. Ji, G.Q. Jiang, Effect of internal curing with super absorbent polymers on residual stress development and stress relaxation in restrained concrete ring specimens, Constr. Build. Mater. 120 (2016) 309–320.
DOI: 10.1016/j.conbuildmat.2016.05.048
Google Scholar
[14]
CS (Chinese Standard) GB 175-2007/XG1-2009. Common Portland Cement, Quality Supervision Inspection and Quarantine of the People's Republic of China and Standardization Administration of the People's Republic China, China, 2009 (in Chinese).
Google Scholar
[15]
ASTM, Standard test method for determining age at cracking and induced tensile stress characteristics of mortar and concrete under restrained shrinkage. Standard C 1581–04, ASTM Int, West Conshohocken (PA), (2013).
DOI: 10.1520/c1581_c1581m-09a
Google Scholar