Structural, Morphological, Optical and Photocatalytic Properties of Os and N Co-Doped TiO2 Films

Article Preview

Abstract:

In the present work, Os and N co-doped TiO2 films were first prepared using a reactive RF magnetron sputtering of Ti–Os metallic target. The effect of Os concentration varying from 0 to 3.0at.% on structure as well as morphology and subsequent changes in optical and photocatalytic properties were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), optical absorption spectra and photoluminescence (PL) spectroscopy. XRD and SEM results show that the co-doping of Os and N favors the crystal growth of TiO2 and leads to a low anatase thermal stability relative to N monodoping. The band gap of the N/Os co-doped films is reduced from 3.42 eV to 3.22 eV compared with the N-TiO2 film. PL investigation further exhibits the effects of Os doping on the electronic structures and defects in N-TiO2.The photocatalytic activities of the films were evaluated by the degradation of methylene blue in aqueous solution under UV light. It was found that the photocatalytic activity increases with increasing Os content first, and then decreases after the optimal Os content. Therefore, the photocatalytic activity of Os/N co-modified TiO2 photocatalysts can be adjusted by the Os content.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

235-242

Citation:

Online since:

July 2020

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxides: a review of fundamentals, process and problems, J.photochem.photobiol.C9(2008)1-12.

Google Scholar

[2] M.A. Henderson. A surface science perspective on TiO2 photocatalysis, Surf.Sci.Rep. 66(2011)185-297.

Google Scholar

[3] X.Q. Cheng, C.Y.Ma, X.Y.Yi, F.Yuan, Y.Xie, J.M.Hu, B.C.Hu, Q.Y. Zhang, Structural, morphological, optical and photocatalytic properties of Gd-doped TiO2 films, Thin Solid Films 615(2016) 13-18.

DOI: 10.1016/j.tsf.2016.06.049

Google Scholar

[4] K.Sridharan, E.Jang, T.J. Park, Novel visible light active graphitic C3N4-TiO2 composite photocatalyst: Synergistic synthesis, growth and photocatalytic treatment of hazardous pollutants, Appl.Cata.B 142-143 (2013) 718-728.

DOI: 10.1016/j.apcatb.2013.05.077

Google Scholar

[5] S.K. Choi, H.S. Yang, J.H. Kim, H.Park, Organic dye-sensitized TiO2 as a versatile photocatalyst for solar hydrogen and environmental remediation,Appl.Catal.B 121-122(2012)206-213.

DOI: 10.1016/j.apcatb.2012.04.011

Google Scholar

[6] C.Quinones, J.Ayala, W.Vallejo, Methylene blue photoelectrodegradation under UV irradition on Au/Pd-modified TiO2 films, Appl. Surf. Sci. 257(2010) 367-371.

DOI: 10.1016/j.apsusc.2010.06.079

Google Scholar

[7] S.Demirci, T. Dikici, M.Yurddaskal, S.Gultekin, M.Toparli, E.Celik, Synthesis and characterization of Ag doped TiO2 heterojunction films and their photocatalytic performances, Appl. Surf. Sci. 390(2016) 591-601.

DOI: 10.1016/j.apsusc.2016.08.145

Google Scholar

[8] J.Wang, D.N. Tafen, J.P. Lewis, Z.L. Hong, A.Manivannan, M.J. Zhi, M.Li, N.Q.Wu, Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts, J.Am.Chem.Soc.131(2009) 12290-12297.

DOI: 10.1021/ja903781h

Google Scholar

[9] A.T. Kuvarega, R.W.M. Krause, B.B. Mamba, Nitrogen/Palladium-codoped TiO2 for efficient visible light photocatalytic dye degradation, J.Phys.Chem. C115(2011) 22110-22120.

DOI: 10.1021/jp203754j

Google Scholar

[10] R.A. Spurr, H.Myers, Quantitative analysis of anatase-rutile mixture with an x-ray diffractometer, Anal.Chem.29(1957)760-762.

DOI: 10.1021/ac60125a006

Google Scholar

[11] D.H. Wang, L.Jia, X.L.Wu, L.Q.Lu, A.W.Xu, One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity, Nanoscale 4(2012) 576-584.

DOI: 10.1039/c1nr11353d

Google Scholar

[12] N.D. Abazovic M.I. Comor M.D. Dramicanin, D.J. Jovanovic, S.P. Ahrenkiel, J.M. Nedeljkovic, Photoluminescence of anatase and rutile TiO2 particles, J.Phys.Chem. B110(2006) 25366-25370.

Google Scholar

[13] L.Kernazhitsky, V.Shymanovska, T.Gavrilko, V.Naumov, L.Fedorenko, V.Kshnyakin, J.Baran, Room temperature photoluminescence of anatase and rutile TiO2 powders, J.Lumin. 146(2014) 199-204.

DOI: 10.1016/j.jlumin.2013.09.068

Google Scholar

[14] X.Y. Pan, M.Q. Yang, X.Z.Fu, N.Zhang, Y.J.Xu, Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications, Nanoscale 5(2013) 3601-3604.

DOI: 10.1039/c3nr00476g

Google Scholar

[15] N.Daude, C.Gout, C.Jouanin, Electronic band structure of titanium dioxide, Phys.Rev.B15 (1977) 3229-3235.

DOI: 10.1103/physrevb.15.3229

Google Scholar