Physical and Mechanical Properties of Poly(Butylene Succinate) and Poly(Lactic Acid) under Landfill Conditions

Article Preview

Abstract:

In this study, the disintegration of poly(butylene succinate)(PBS) and poly(lactic acid) (PLA) under landfill conditions was investigated. Both polymers were melted, injected into a dumbbell-shape, and buried under the soil for 20 weeks. The morphology of the polymer from the scanning electron microscope (SEM) revealed that, after 6 weeks of the burial, the PBS polymer produced many micro-voids in the bulk of polymer. The amount of the voids increased with time. While the morphology of PLA showed a few voids and some cracks during the degradation process. Moreover, the mechanical properties of the PLA were decreased after 2 weeks following with PBS after 4 weeks of the burial times. The weight loss and the water uptake of PBS and PLA were slightly increased. From the result, it was found that the degradation of PBS and PLA proceeds via random chain scission of the ester bond through bulk erosion mechanism. The degradation of PLA degraded faster than the PBS due to the low crystallinity in the polymer chain. This result can be applied to the design waste management of biodegradable polymer products.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

245-252

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.P. Haider, C. Volker, J. Kramm, K. Landfester, F.R. Wurm, Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society, Angew. Chem. Int. Ed. 58 (2019) 50-62.

DOI: 10.1002/anie.201805766

Google Scholar

[2] C.Y. Barlow, D.C. Morgan, Polymer film packaging for food: An environmental assessment, Resour. Conserv. Recycl. 78 (2013) 74-80.

Google Scholar

[3] C.J. Moore, Synthetic polymers in the marine environment: A rapidly increasing, long-term threat, Environ. Res. 108 (2008) 131-139.

DOI: 10.1016/j.envres.2008.07.025

Google Scholar

[4] M. Eriksen, N. Maximenko, M. Thiel, A. Cummins, G.Lattin, S. Wilson, J. Hafner, A. Zellers, S. Rifman, Plastic pollution in the South Pacific subtropical gyre, Mar Pollut. Bull. 68 (2013) 71-76.

DOI: 10.1016/j.marpolbul.2012.12.021

Google Scholar

[5] L.C. de Sáa, M. Oliveirab, F. Ribeiroc, T.L. Rochad, M.N. Futter, Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future?, Sci. Total Environ. 645 (2018) 1029-1039.

DOI: 10.1016/j.scitotenv.2018.07.207

Google Scholar

[6] S. Zhang, J. Wang, X. Liu, F. Qu, X. Wang, X. Wang, Y. Li, Y. Sun, Microplastics in the environment: A review of analytical methods, distribution, and biological effects, Trends Anal. Chem. 111 (2019) 62-72.

DOI: 10.1016/j.trac.2018.12.002

Google Scholar

[7] M.A. Browne, P. Crump, S.J. Niven, E. Teuten, A. Tonkin, T. Galloway, R. Thompson, Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks, Environ. Sci. Technol. 45(2011) 9175-9179.

DOI: 10.1021/es201811s

Google Scholar

[8] V. Hidalgo-Ruz, L. Gutow, R.C. Thompson, M. Thiel, Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification, Environ. Sci. Technol. 46 (2012) 3060-3075.

DOI: 10.1021/es2031505

Google Scholar

[9] S. Mizuno, T. Maeda, C. Kanemura, A. Hotta, Biodegradability, reprocessability, and mechanical properties of polybutylene succinate (PBS) photografted by hydrophilic or hydrophobic membranes, Polym. Degrad. Stabil. 117 (2015) 58-65.

DOI: 10.1016/j.polymdegradstab.2015.03.015

Google Scholar

[10] N. Lucasa, C. Bienaime, C. Belloy, M. Queneudec, F. Silvestre, J.-E. Nava-Saucedo, Polymer biodegradation: Mechanisms and estimation techniques – A review, Chemosphere, 73(2008) 429-442.

DOI: 10.1016/j.chemosphere.2008.06.064

Google Scholar

[11] S. Doppalapudia, A. Jaina, W. Khana, A.J. Domb, Biodegradable polymers—an overview, Polym. Adv. Technol. 25 (2014) 427-435.

DOI: 10.1002/pat.3305

Google Scholar

[12] G.E. Luckachan, C.K.S. Pillai, Biodegradable Polymers- A Review on Recent Trends and Emerging Perspectives, J. Polym. Environ. 19 (2011) 637-676.

DOI: 10.1007/s10924-011-0317-1

Google Scholar

[13] H.-S. Kim, H.-S. Yang, H.-J. Kim, Biodegradability and Mechanical Properties of Agro-Flour– Filled Polybutylene Succinate Biocomposites, J. Appl. Polym. Sci. 97(2005) 1513-1521.

DOI: 10.1002/app.21905

Google Scholar

[14] J. Zhou, X. Wang, K. Hua, C. Duan, W. Zhang, J. Ji, X. Yang, Enhanced mechanical properties and degradability of poly(butylene succinate) and poly(lactic acid) blends, Iran Polym. J. 22 (2013) 267-275.

DOI: 10.1007/s13726-013-0124-8

Google Scholar

[15] T. Yokohara, M. Yamaguchi, Structure and properties for biomass-based polyester blends of PLA and PBS, Eur. Polym. J. 44 (2008) 677-685.

DOI: 10.1016/j.eurpolymj.2008.01.008

Google Scholar

[16] Roohi, M. R. Zaheer, M. Kuddus, PHB (poly‐β‐hydroxybutyrate) and its enzymatic degradation, Polym Adv Technol. 29 (2018) 30-40.

DOI: 10.1002/pat.4126

Google Scholar

[17] M. Bartnikowskia, T.R. Dargaville, S. Ivanovski, D.W. Hutmacher, Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment, Prog. Polym. Sci. 96 (2019) 1-20.

DOI: 10.1016/j.progpolymsci.2019.05.004

Google Scholar

[18] K.P. Andriano, Y. Tabata, Y. Ikada, J. Heller, In vitro and in vivo comparison of bulk and surface hydrolysis in absorbable polymer scaffolds for tissue engineering. J Biomed. Mater. Res. 48(1999) 602-612.

DOI: 10.1002/(sici)1097-4636(1999)48:5<602::aid-jbm3>3.0.co;2-6

Google Scholar

[19] F. von Burkersroda, L. Schedl, A. Go¨pferich, Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 23(2002) 4221-4231.

DOI: 10.1016/s0142-9612(02)00170-9

Google Scholar

[20] T.D. Farahani, A.A. Entezami, M. Abtahi, Degradation of poly(D, L-lactide-co-glycolide) 50:50 implant in aqueous medium, Iran Polym J. 14 (2005) 753-763.

Google Scholar

[21] A. Go¨pferich, Polymer bulk erosion, Macromolecules 30 (1997) 2598-2604.

Google Scholar

[22] S. Su, R. Kopitzky, S. Tolga, S. Kabasci, Polylactide (PLA) and Its Blends with Poly(butylene succinate) (PBS): A Brief Review, Polymer 11 (2019) 1193, 1-21.

DOI: 10.3390/polym11071193

Google Scholar

[23] A.L. Andrady, Assessment of Environmental Biodegradation of Synthetic Polymers, J. Macromol. Sci. Polym. Rev. 34 (1994) 25-76.

Google Scholar

[24] C. Boonmee, C. Kositanont, T. Leejarkpai, Degradation of Poly (lactic acid) under Simulated Landfill Conditions, Environ. Nat. Resour. J. 14 (2016)1-9.

Google Scholar

[25] R. Muthuraj, M. Misra, A.K. Mohanty, Hydrolytic degradation of biodegradable polyesters under simulated environmental conditions, J. Appl. Polym. Sci. 42189 (2015) 1-13.

DOI: 10.1002/app.42189

Google Scholar

[26] M.A. Elsawya, K.-H. Kimc, J.-W. Parkc, A. Deep, Hydrolytic degradation of polylactic acid (PLA) and its composites, Renew. Sust. Energ. Rev. 79 (2017) 1346-1352.

Google Scholar

[27] A. M. Harris and E.C. Lee, Durability of Polylactide-Based Polymer Blends for Injection-Molded Applications, J. Appl. Polym. Sci. (2013) 2136-2144.

DOI: 10.1002/app.38407

Google Scholar

[28] X. Hu1, T. Su1, P. Li1, Z. Wang, Blending modification of PBS/PLA and its enzymatic degradation, Polym. Bull. 75 (2018) 533-546.

DOI: 10.1007/s00289-017-2054-7

Google Scholar