[1]
A. Casagrande and N. Carrillo, On liquefaction phenomena, by professor a. casagrande: report of lecture, Geotech. 21(3) 1971 197-202.
DOI: 10.1680/geot.1971.21.3.197
Google Scholar
[2]
H. Hanzawa and Mi.Z.H. Akira Sato, Undrained strength and stability analysis for a quick sand, Soils Found., 20(2) 1980 17–29.
DOI: 10.3208/sandf1972.20.2_17
Google Scholar
[3]
M. Hyodo, Y. Yamamoto, and M. Sugiyama, Undrained cyclic shear behaviour of normally consolidated clay subjected to initial static shear stress, Soils Found., 34(4) 1994 1–11.
DOI: 10.3208/sandf1972.34.4_1
Google Scholar
[4]
S. Miura, S. Toki, and S. Nakakuki, A sample preparation method and its effect on static and cyclic deformation-strength properties of sand, Soils Found., 22(1) 1982 61–77.
DOI: 10.3208/sandf1972.22.61
Google Scholar
[5]
F. Tatsuoka, K. Ochi, S. Fujii, M. Okamoto, and S. Nakakuki, Cyclic undrained triaxial and torsional shear strength of sands for different sample preparation methods, Soils Found., 26(3) 1985 23–41.
DOI: 10.3208/sandf1972.26.3_23
Google Scholar
[6]
A. Casagrande and N. Carrillo, Shear failure of anisotropic materials, Proc. Bost. Soc. Civ. Engrs, 31 1944 74–87.
Google Scholar
[7]
M.J.P.R. Symes, A. Gens, and D.W. Hight, Undrained anisotropy and principal stress rotation in saturated sand, Geotechnique, 34(1) 1984 11–27.
DOI: 10.1680/geot.1984.34.1.11
Google Scholar
[8]
Z. Cheng, J. Wang, B. Zhao, Q. Liu, and J. C. Santamarina, Evolution of granular contact gain, loss and movement under shear studied using synchrotron x-ray micro-tomography, in Micro to MACRO Mathematical Modelling in Soil Mechanics, September, Springer, 2018 81–88.
DOI: 10.1007/978-3-319-99474-1_8
Google Scholar
[9]
Q. Sun, J. Zheng, H. He, and Z. Li, Characterizing Fabric Anisotropy of Air-Pluviated Sands, in E3S Web of Conferences, 92 2019 1003.
DOI: 10.1051/e3sconf/20199201003
Google Scholar
[10]
Z.X. Yang, X.S. Li, and J. Yang, Undrained anisotropy and rotational shear in granular soil, Géotechnique, 57(4) 2007 371–384.
DOI: 10.1680/geot.2007.57.4.371
Google Scholar
[11]
M.Z.H. Akira Sato, E. Hoque, and F. Tatsuoka, Anisotropy in elastic deformation of granular materials, Soils Found., 38(1) 1998 163–179.
DOI: 10.3208/sandf.38.163
Google Scholar
[12]
P. Dubujet and T. Doanh, Undrained instability of very loose Hostun sand in triaxial compression and extension. Part 2: Theoretical analysis using an elastoplasticity model, Mech. Cohesive-frictional Mater. An Int. J. Exp. Model. Comput. Mater. Struct., 2(1) 1997 71–92.
DOI: 10.1002/(sici)1099-1484(199701)2:1<71::aid-cfm25>3.0.co;2-9
Google Scholar
[13]
S.M.R. Imam, D.H. Chan, P.K. Robertson, and N.R. Morgenstren, Effect of anisotropic yielding on the flow liquefaction of loose sand, Soils Found., 42(3) 2002 33–44.
DOI: 10.3208/sandf.42.3_33
Google Scholar
[14]
F. Kaviani Hamedani, Evaluation of monotonic behavior of Firouzkuh sand in different stress path, Amirkabir University of Technology, (2014).
Google Scholar
[15]
A. Lashkari, A. Karimi, K. Fakharian, and F. Kaviani-Hamedani, Prediction of undrained behavior of isotropically and anisotropically consolidated firoozkuh sand: Instability and flow liquefaction, Int. J. Geomech.,17(10) 2017 1–17.
DOI: 10.1061/(asce)gm.1943-5622.0000958
Google Scholar
[16]
K.H. Roscoe, A.N. Schofield, and C.P. Wroth, On the yielding of soils, Géotechnique, 8(1) 1958 22–53.
DOI: 10.1680/geot.1958.8.1.22
Google Scholar
[17]
K. Fakharian, F.K. Hamedani, I. Parandian, and M.J. Aghdam, Investigation of fabric evolution using bidirectional shear wave velocity measurements, in E3S Web of Conferences, 92 2019 3008.
DOI: 10.1051/e3sconf/20199203008
Google Scholar
[18]
M. Yoshimine, K. Ishihara, and S. Nakakuki, Flow potential of sand during liquefaction, Soils Found., 38(3) 1998 189–198.
DOI: 10.3208/sandf.38.3_189
Google Scholar
[19]
R. Bellotti, M. Jamiolkowski, D.C.F. Lo Presti, and D.A. O'Neill, Anisotropy of small strain stiffness in Ticino sand, Geotechnique, 46(1) 1996 115–131.
DOI: 10.1680/geot.1996.46.1.115
Google Scholar
[20]
X. Gu, J. Yang, M. Huang, and G. Gao, Bender element tests in dry and saturated sand: Signal interpretation and result comparison, Soils Found., 55(5) 2015 951–962.
DOI: 10.1016/j.sandf.2015.09.002
Google Scholar
[21]
D.S. Pennington, D.F.T.T. Nash, and M.L. Lings, Anisotropy of G0 shear stiffness in Gault Clay, Geotechnique, 47(3) 1997 391–398.
DOI: 10.1680/geot.1997.47.3.391
Google Scholar
[22]
X. Li and H.-S. Yu, Influence of loading direction on the behavior of anisotropic granular materials, Int. J. Eng. Sci., 47(11–12) 2009 1284–1296.
DOI: 10.1016/j.ijengsci.2009.03.001
Google Scholar
[23]
W.M. Yan and L. Zhang, Fabric and the critical state of idealized granular assemblages subject to biaxial shear, Comput. Geotech., 49 2013 43–52.
DOI: 10.1016/j.compgeo.2012.10.015
Google Scholar
[24]
X.S. Li and Y.F. Dafalias, Anisotropic critical state theory: role of fabric, J. Eng. Mech., 138(3) 2011 263–275.
DOI: 10.1061/(asce)em.1943-7889.0000324
Google Scholar
[25]
J. Zhao, N. Guo, and X. S. Li, Unique critical state characteristics in granular media considering fabric anisotropy, Géotechnique, 63(8) 2013 695.
DOI: 10.1680/geot.12.p.040
Google Scholar
[26]
Z. Cheng and J. Wang, Experimental investigation of inter-particle contact evolution of sheared granular materials using X-ray micro-tomography, Soils Found., 58(6) 2018 1492–1510.
DOI: 10.1016/j.sandf.2018.08.008
Google Scholar
[27]
T. Iwasaki, F. Tatsuoka, Y. Takagi, and S. Nakakuki, Shear moduli of sands under cyclic torsional shear loading, Soils Found., 18(1) 1978 39–56.
DOI: 10.3208/sandf1972.18.39
Google Scholar
[28]
D.J. Shirley and L.D. Hampton, Shear-wave measurements in laboratory sediments, J. Acoust. Soc. Am., 63(2) 1978 607–613.
Google Scholar
[29]
J.E. White, L. Martineau-Nicoletis, and C. Monash, Measured anisotropy in Pierre shale, Geophys. Prospect., 31(5) 1983 709–725.
DOI: 10.1111/j.1365-2478.1983.tb01081.x
Google Scholar
[30]
I. Towhata, Geotechnical earthquake engineering. Springer Science & Business Media, (2008).
Google Scholar
[31]
S. Teachavorasinskun, Combined Inherent and Stress Induced Anisotropy on the Initial Shear Modulus of Sand, Electron. J. Geotech. Eng., 19 2014 8861–8869.
Google Scholar
[32]
M.A. Styler and J.A. Howie, Continuous monitoring of bender element shear wave velocities during triaxial testing, Geotech. Test. J., 37(2) (2014).
DOI: 10.1520/gtj20120098
Google Scholar
[33]
N.C. Consoli, R.C. Cruz, M.F. Floss, and L. Festugato, Parameters controlling tensile and compressive strength of artificially cemented sand, J. Geotech. Geoenvironmental Eng., 136(5) 2010 759–763.
DOI: 10.1061/(asce)gt.1943-5606.0000278
Google Scholar
[34]
G.V Rotta, N.C. Consoli, P.D. M. Prietto, M.R. Coop, and J. Graham, Isotropic yielding in an artificially cemented soil cured under stress, Geotechnique, 53(5) 2003 493–501.
DOI: 10.1680/geot.2003.53.5.493
Google Scholar
[35]
R. Salgado, S. Yoon, and N.Z. Siddiki, Construction of tire shreds test embankment, (2003).
DOI: 10.5703/1288284313165
Google Scholar
[36]
V. O'Shaughnessy and V.K. Garga, Tire-reinforced earthfill. Part 2: Pull-out behaviour and reinforced slope design, Can. Geotech. J., 37(1) 2000 97–116.
DOI: 10.1139/t99-085
Google Scholar
[37]
T.B. Edil and P.J. Bosscher, Engineering properties of tire chips and soil mixtures, Geotech. Test. J., 17(4) 1994 453–464.
DOI: 10.1520/gtj10306j
Google Scholar
[38]
M. Wiszniewski and A.F. Cabalar, Applications of permeability, oedometer and direct shear tests to the sand mixed with waste tire crumb, Acta Sci. Pol. Archit., 15(1) (2016).
Google Scholar
[39]
M. F. Attom, The use of shredded waste tires to improve the geotechnical engineering properties of sands, Environ. Geol., 49(4) 2006 497–503.
DOI: 10.1007/s00254-005-0003-5
Google Scholar
[40]
B. Livingston and N. Ravichandran, Properties of shredded roof membrane--sand mixture and its application as retaining wall backfill under static and earthquake loads, Recycling, 2(2) 2017 8.
DOI: 10.3390/recycling2020008
Google Scholar
[41]
M. Neaz Sheikh, M.S. Mashiri, J.S. Vinod, and H.H. Tsang, Shear and compressibility behavior of sand--tire crumb mixtures, J. Mater. Civ. Eng., 25(10) 2013 1366–1374.
DOI: 10.1061/(asce)mt.1943-5533.0000696
Google Scholar
[42]
D.J. Jang, J. D. Frost, and J.Y. Park, Preparation of epoxy impregnated sand coupons for image analysis, Geotech. Test. J., 22(2) 1999 153–164.
DOI: 10.1520/gtj11274j
Google Scholar
[43]
A. H. Eghbali and K. Fakharian, Effect of principal stress rotation in cement-treated sands using triaxial and simple shear tests, Int. J. Civ. Eng., 12(1) 2014 1–14.
Google Scholar
[44]
K. Fakharian, A. H. Eghbali, S. Heidari Golafzani, and M. Khanmohamadi, Specimen preparation methods for artificially cemented sand in simple shear and hollow cylinder apparatuses, Sci. Iran., 25(1) 2018 22–32.
DOI: 10.24200/sci.2017.4177
Google Scholar
[45]
R. S. Ladd, Preparing test specimens using undercompaction, Geotech. Test. J., 1(1) 1978 16-23.
DOI: 10.1520/gtj10364j
Google Scholar
[46]
A. Ahmad and K. Fakharian, Effect of stress rotation and intermediate stress ratio on monotonic behavior of granulated rubber–sand mixtures, Journal of Materials in Civil Engineering, 32(4) 2020 1–11.
DOI: 10.1061/(asce)mt.1943-5533.0003054
Google Scholar