Influence of Initial Anisotropy, Stress Path and Principal Stress Rotation on Monotonic Behavior of Clean and Mixed Sands

Article Preview

Abstract:

It is widely accepted that soil behavior is complicated taking into account soil anisotropy owing to the fact that this phenomenon arises from oriented soil fabric or structure forged in the deposition stage. In this study, a review of major findings of authors’ previous studies are presented with the main focus on soil anisotropy using extensive experimental results incuding Triaxial (TXT), Simple Shear (SSA), and Hollow Cylinder (HCA) apparatus. Effects of initial anisotropy, fabric evolution, stress path, principal stress rotation and intermediate stress state are evaluated for a crushed silica sand. In addition, the effects of Portland cement content and granulated rubber contents on anisotropic behavior of the sand are investigated. Bender elments are mounted on triaxial specimens both in vertical and horizontal directions to measure the shear wave velocity and hence maximum shear modulus at the end of consolidation as well as during shearing up to large strains at critical state condition, as an index of evaluating the fabric evolution. The effects of principal stress rotation and stress paths reveals the crucial role of soil anisotropy on the behavior of clean sand. However, adding either cement or granulated rubber to the sand has considerably decreased anisotropy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

417-430

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Casagrande and N. Carrillo, On liquefaction phenomena, by professor a. casagrande: report of lecture, Geotech. 21(3) 1971 197-202.

DOI: 10.1680/geot.1971.21.3.197

Google Scholar

[2] H. Hanzawa and Mi.Z.H. Akira Sato, Undrained strength and stability analysis for a quick sand, Soils Found., 20(2) 1980 17–29.

DOI: 10.3208/sandf1972.20.2_17

Google Scholar

[3] M. Hyodo, Y. Yamamoto, and M. Sugiyama, Undrained cyclic shear behaviour of normally consolidated clay subjected to initial static shear stress, Soils Found., 34(4) 1994 1–11.

DOI: 10.3208/sandf1972.34.4_1

Google Scholar

[4] S. Miura, S. Toki, and S. Nakakuki, A sample preparation method and its effect on static and cyclic deformation-strength properties of sand, Soils Found., 22(1) 1982 61–77.

DOI: 10.3208/sandf1972.22.61

Google Scholar

[5] F. Tatsuoka, K. Ochi, S. Fujii, M. Okamoto, and S. Nakakuki, Cyclic undrained triaxial and torsional shear strength of sands for different sample preparation methods, Soils Found., 26(3) 1985 23–41.

DOI: 10.3208/sandf1972.26.3_23

Google Scholar

[6] A. Casagrande and N. Carrillo, Shear failure of anisotropic materials, Proc. Bost. Soc. Civ. Engrs, 31 1944 74–87.

Google Scholar

[7] M.J.P.R. Symes, A. Gens, and D.W. Hight, Undrained anisotropy and principal stress rotation in saturated sand, Geotechnique, 34(1) 1984 11–27.

DOI: 10.1680/geot.1984.34.1.11

Google Scholar

[8] Z. Cheng, J. Wang, B. Zhao, Q. Liu, and J. C. Santamarina, Evolution of granular contact gain, loss and movement under shear studied using synchrotron x-ray micro-tomography, in Micro to MACRO Mathematical Modelling in Soil Mechanics, September, Springer, 2018 81–88.

DOI: 10.1007/978-3-319-99474-1_8

Google Scholar

[9] Q. Sun, J. Zheng, H. He, and Z. Li, Characterizing Fabric Anisotropy of Air-Pluviated Sands, in E3S Web of Conferences, 92 2019 1003.

DOI: 10.1051/e3sconf/20199201003

Google Scholar

[10] Z.X. Yang, X.S. Li, and J. Yang, Undrained anisotropy and rotational shear in granular soil, Géotechnique, 57(4) 2007 371–384.

DOI: 10.1680/geot.2007.57.4.371

Google Scholar

[11] M.Z.H. Akira Sato, E. Hoque, and F. Tatsuoka, Anisotropy in elastic deformation of granular materials, Soils Found., 38(1) 1998 163–179.

DOI: 10.3208/sandf.38.163

Google Scholar

[12] P. Dubujet and T. Doanh, Undrained instability of very loose Hostun sand in triaxial compression and extension. Part 2: Theoretical analysis using an elastoplasticity model, Mech. Cohesive-frictional Mater. An Int. J. Exp. Model. Comput. Mater. Struct., 2(1) 1997 71–92.

DOI: 10.1002/(sici)1099-1484(199701)2:1<71::aid-cfm25>3.0.co;2-9

Google Scholar

[13] S.M.R. Imam, D.H. Chan, P.K. Robertson, and N.R. Morgenstren, Effect of anisotropic yielding on the flow liquefaction of loose sand, Soils Found., 42(3) 2002 33–44.

DOI: 10.3208/sandf.42.3_33

Google Scholar

[14] F. Kaviani Hamedani, Evaluation of monotonic behavior of Firouzkuh sand in different stress path, Amirkabir University of Technology, (2014).

Google Scholar

[15] A. Lashkari, A. Karimi, K. Fakharian, and F. Kaviani-Hamedani, Prediction of undrained behavior of isotropically and anisotropically consolidated firoozkuh sand: Instability and flow liquefaction, Int. J. Geomech.,17(10) 2017 1–17.

DOI: 10.1061/(asce)gm.1943-5622.0000958

Google Scholar

[16] K.H. Roscoe, A.N. Schofield, and C.P. Wroth, On the yielding of soils, Géotechnique, 8(1) 1958 22–53.

DOI: 10.1680/geot.1958.8.1.22

Google Scholar

[17] K. Fakharian, F.K. Hamedani, I. Parandian, and M.J. Aghdam, Investigation of fabric evolution using bidirectional shear wave velocity measurements, in E3S Web of Conferences, 92 2019 3008.

DOI: 10.1051/e3sconf/20199203008

Google Scholar

[18] M. Yoshimine, K. Ishihara, and S. Nakakuki, Flow potential of sand during liquefaction, Soils Found., 38(3) 1998 189–198.

DOI: 10.3208/sandf.38.3_189

Google Scholar

[19] R. Bellotti, M. Jamiolkowski, D.C.F. Lo Presti, and D.A. O'Neill, Anisotropy of small strain stiffness in Ticino sand, Geotechnique, 46(1) 1996 115–131.

DOI: 10.1680/geot.1996.46.1.115

Google Scholar

[20] X. Gu, J. Yang, M. Huang, and G. Gao, Bender element tests in dry and saturated sand: Signal interpretation and result comparison, Soils Found., 55(5) 2015 951–962.

DOI: 10.1016/j.sandf.2015.09.002

Google Scholar

[21] D.S. Pennington, D.F.T.T. Nash, and M.L. Lings, Anisotropy of G0 shear stiffness in Gault Clay, Geotechnique, 47(3) 1997 391–398.

DOI: 10.1680/geot.1997.47.3.391

Google Scholar

[22] X. Li and H.-S. Yu, Influence of loading direction on the behavior of anisotropic granular materials, Int. J. Eng. Sci., 47(11–12) 2009 1284–1296.

DOI: 10.1016/j.ijengsci.2009.03.001

Google Scholar

[23] W.M. Yan and L. Zhang, Fabric and the critical state of idealized granular assemblages subject to biaxial shear, Comput. Geotech., 49 2013 43–52.

DOI: 10.1016/j.compgeo.2012.10.015

Google Scholar

[24] X.S. Li and Y.F. Dafalias, Anisotropic critical state theory: role of fabric, J. Eng. Mech., 138(3) 2011 263–275.

DOI: 10.1061/(asce)em.1943-7889.0000324

Google Scholar

[25] J. Zhao, N. Guo, and X. S. Li, Unique critical state characteristics in granular media considering fabric anisotropy, Géotechnique, 63(8) 2013 695.

DOI: 10.1680/geot.12.p.040

Google Scholar

[26] Z. Cheng and J. Wang, Experimental investigation of inter-particle contact evolution of sheared granular materials using X-ray micro-tomography, Soils Found., 58(6) 2018 1492–1510.

DOI: 10.1016/j.sandf.2018.08.008

Google Scholar

[27] T. Iwasaki, F. Tatsuoka, Y. Takagi, and S. Nakakuki, Shear moduli of sands under cyclic torsional shear loading, Soils Found., 18(1) 1978 39–56.

DOI: 10.3208/sandf1972.18.39

Google Scholar

[28] D.J. Shirley and L.D. Hampton, Shear-wave measurements in laboratory sediments, J. Acoust. Soc. Am., 63(2) 1978 607–613.

Google Scholar

[29] J.E. White, L. Martineau-Nicoletis, and C. Monash, Measured anisotropy in Pierre shale, Geophys. Prospect., 31(5) 1983 709–725.

DOI: 10.1111/j.1365-2478.1983.tb01081.x

Google Scholar

[30] I. Towhata, Geotechnical earthquake engineering. Springer Science & Business Media, (2008).

Google Scholar

[31] S. Teachavorasinskun, Combined Inherent and Stress Induced Anisotropy on the Initial Shear Modulus of Sand, Electron. J. Geotech. Eng., 19 2014 8861–8869.

Google Scholar

[32] M.A. Styler and J.A. Howie, Continuous monitoring of bender element shear wave velocities during triaxial testing, Geotech. Test. J., 37(2) (2014).

DOI: 10.1520/gtj20120098

Google Scholar

[33] N.C. Consoli, R.C. Cruz, M.F. Floss, and L. Festugato, Parameters controlling tensile and compressive strength of artificially cemented sand, J. Geotech. Geoenvironmental Eng., 136(5) 2010 759–763.

DOI: 10.1061/(asce)gt.1943-5606.0000278

Google Scholar

[34] G.V Rotta, N.C. Consoli, P.D. M. Prietto, M.R. Coop, and J. Graham, Isotropic yielding in an artificially cemented soil cured under stress, Geotechnique, 53(5) 2003 493–501.

DOI: 10.1680/geot.2003.53.5.493

Google Scholar

[35] R. Salgado, S. Yoon, and N.Z. Siddiki, Construction of tire shreds test embankment, (2003).

DOI: 10.5703/1288284313165

Google Scholar

[36] V. O'Shaughnessy and V.K. Garga, Tire-reinforced earthfill. Part 2: Pull-out behaviour and reinforced slope design, Can. Geotech. J., 37(1) 2000 97–116.

DOI: 10.1139/t99-085

Google Scholar

[37] T.B. Edil and P.J. Bosscher, Engineering properties of tire chips and soil mixtures, Geotech. Test. J., 17(4) 1994 453–464.

DOI: 10.1520/gtj10306j

Google Scholar

[38] M. Wiszniewski and A.F. Cabalar, Applications of permeability, oedometer and direct shear tests to the sand mixed with waste tire crumb, Acta Sci. Pol. Archit., 15(1) (2016).

Google Scholar

[39] M. F. Attom, The use of shredded waste tires to improve the geotechnical engineering properties of sands, Environ. Geol., 49(4) 2006 497–503.

DOI: 10.1007/s00254-005-0003-5

Google Scholar

[40] B. Livingston and N. Ravichandran, Properties of shredded roof membrane--sand mixture and its application as retaining wall backfill under static and earthquake loads, Recycling, 2(2) 2017 8.

DOI: 10.3390/recycling2020008

Google Scholar

[41] M. Neaz Sheikh, M.S. Mashiri, J.S. Vinod, and H.H. Tsang, Shear and compressibility behavior of sand--tire crumb mixtures, J. Mater. Civ. Eng., 25(10) 2013 1366–1374.

DOI: 10.1061/(asce)mt.1943-5533.0000696

Google Scholar

[42] D.J. Jang, J. D. Frost, and J.Y. Park, Preparation of epoxy impregnated sand coupons for image analysis, Geotech. Test. J., 22(2) 1999 153–164.

DOI: 10.1520/gtj11274j

Google Scholar

[43] A. H. Eghbali and K. Fakharian, Effect of principal stress rotation in cement-treated sands using triaxial and simple shear tests, Int. J. Civ. Eng., 12(1) 2014 1–14.

Google Scholar

[44] K. Fakharian, A. H. Eghbali, S. Heidari Golafzani, and M. Khanmohamadi, Specimen preparation methods for artificially cemented sand in simple shear and hollow cylinder apparatuses, Sci. Iran., 25(1) 2018 22–32.

DOI: 10.24200/sci.2017.4177

Google Scholar

[45] R. S. Ladd, Preparing test specimens using undercompaction, Geotech. Test. J., 1(1) 1978 16-23.

DOI: 10.1520/gtj10364j

Google Scholar

[46] A. Ahmad and K. Fakharian, Effect of stress rotation and intermediate stress ratio on monotonic behavior of granulated rubber–sand mixtures, Journal of Materials in Civil Engineering,  32(4) 2020 1–11.

DOI: 10.1061/(asce)mt.1943-5533.0003054

Google Scholar