Absorption of Water Vapor Using Superabsorbent Polymer Composite Material

Article Preview

Abstract:

The ability of superabsorbent polymers (SAP) to absorb water vapor was studied. A multilayer composite material was prepared where SAP particles were spread in the fluffy fibrous layer located in the middle of the composite structure. Distribution of SAP within the composite material permits air to pass through its porous structure effectively hence allowing efficient contact of air with SAP. SAP was able to decrease the relative humidity of air of a 3-L cabinet from 96% relative humidity (RH) to 52% and 49 % (RH) in 18 hours using 2 g and 4 g of SAP respectively. Study on the water vapor absorption ability of SAP placed together with pure water in a closed cabinet was conducted with and without convective air transport effect. Convective air transport was done by activating the 12 V fan allowing air recirculation speed at rates corresponding to constant voltage settings of 6 V and 12 V. Higher SAP water vapor absorption rate was obtained at higher air recirculation speed. SAP particles swelled after water vapor absorption with slight decrease in the porosity of composite material as observed through the digital microscope.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

129-139

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. F. Montesanoa, A. Parente, P. Santamaria, A. Sannino and F. Serio, Biodegradable Superabsorbent Hydrogel increases water retention properties of growing media and plant growth, Agriculture and Agricultural Science Procedia. 4 (2014) 451-458.

DOI: 10.1016/j.aaspro.2015.03.052

Google Scholar

[2] E. M. Ahmed, Hydrogel, Preparation, characterization, and applications: A Review, J. of Advance Research. 6 (2015) 105-121.

Google Scholar

[3] M. Verhulsel, M. Vignes, S. Descroix, L. Malaquin, D. M. Vignjevic and J.L. Viovy, A review of microfabrication and hydrogel engineering for micro-organs on chips, Biomaterials. 35 (2014) 1816-1832.

DOI: 10.1016/j.biomaterials.2013.11.021

Google Scholar

[4] S. Kiatkamjornwong, Superabsorbent Polymers and Superabsorbent Polymer Composites, ScienceAsia. 33 (2007) 39-43.

Google Scholar

[5] O. M. Jensen, Water Absorption of Superabsorbent Polymers in Cementitious Environment, International RILEM Conference on Advances on Construction Materials through Science and Engineering, RILEM Publications S.A.R.L., HongKong (2011) 22-35.

Google Scholar

[6] T. Tsubakimoto, T. Shimomura, Y. Irie, Y. Masuda, K. Kimura and T. Hatsuda, U.S. Patent 4,734,478 (1985).

Google Scholar

[7] F.L. Buchholz, A. T. Graham, Modern Superabsorbent Polymer Tech., Wiley-VCH, NY (1998).

Google Scholar

[8] J. Mohammad, M. J. Zohuriaan-Mehr, and K. Kabiri, Superabsorbent Polymer Materials: A Review, Iranian Polymer Journal. 6 (2008) 451-477.

Google Scholar

[9] F. Nnadi and C. Brave, Environmentally friendly superabsorbent polymers for water conservation in agricultural lands, J. of Soil Sci. and Environ. Manag. 2(2011) 206-211.

Google Scholar

[10] E. M. Fayyad, M. A. Almaadeed, A. Jones and A. M. Abdullah, Evaluation Techniques for the Corrosion Resistance of Self Healing Coatings. Int. J. Electrochem. Sci., 9 (2014) 4989 -5011.

Google Scholar

[11] J. S. Vimala1, M. Natesan and Susai Rajendran , Corrosion and Protection of Electronic Components in Different Environmental Conditions- An Overview, The Open Corrosion Journal. 2 (2009) 105-113.

DOI: 10.2174/1876503300902010105

Google Scholar

[12] S. Prvulovic, D. Tolmac, and M. Lambic. Convection Drying in the Food Industry, Agricultural Engineering International: The CIGR Ejournal. 9 (2007) 1-12.

Google Scholar

[13] D. Tolmac, S. Prvulovic and L. Radovanovic, Effects of Heat Transfer on Convection Dryer with Pneumatic Transport of Material, FME Transactions. 36 (2008) 45-49.

Google Scholar

[14] M.T. Islam, B.P. Marks and F.W. Bakker-Arkema, Optimization of Commercial Ear Corn Dryers, Agricultural Engineering International: The CIGR Ejournal. 6(2004), 1-16.

Google Scholar

[15] T.F.N. Thoruwa, C.M. Johnstone, A.D. Grant and J. Smith, Low cost CaCl2 based desiccants for solar crop drying applications,  Renew Energy. 19 (2000) 513–520.

DOI: 10.1016/s0960-1481(99)00072-5

Google Scholar

[16] D.  O. Mbuge, R.  Negrini, L. O. Nyakundi, S. P. Kuate, R. Bandyopadhya, W. M. Muiru, B. Torto and R. Mezzenga, Application of superabsorbent polymers (SAP) as desiccants to dry maize and reduce aflatoxin contamination, J. of Food Sci. Technol. 53 (2016) 3157–3165.

DOI: 10.1007/s13197-016-2289-6

Google Scholar

[17] S. Odero, D. O. Mbuge, E. B. K. Mutai, G. Mutuli, Evaluation of the Effectiveness of Super Absorbent Polymers (SAPs) In Air Dehumidification for Maize Drying International Journal of Innovative Research in Engineering & Management (IJIREM). 3 (2016) ISSN: 2350-0557.

Google Scholar

[18] J. Alaei, S. H. Boroojerdi and Z. Rabiei. Application of hydrogels in drying operation, Petroleum and Coal. 47 (2005), 32-37.

Google Scholar

[19] A. Melendres, J. A. Antang and J. Manacob, Investigation of Superabsorbent Polymer Absorbency at Reduced Chemical Potential of Water, MATEC Web of Conferences. 268 (2019) 04010.

DOI: 10.1051/matecconf/201926804010

Google Scholar

[20] T. K. Mudiyanselage and D. C. Neckers, Highly absorbing superabsorbent polymer, J Polym Sci A Polym Chem. 46 (2008) 1357-1364.

DOI: 10.1002/pola.22476

Google Scholar

[21] J. Xie, X. Liu, J. Liang and Y. Luo, Swelling. properties of superabsorbent poly(acrylic acid-co-acryl amide) with different crosslinkers. J. of Polymer Science. 2009, 12(2), 602-608.

DOI: 10.1002/app.29463

Google Scholar

[22] M. C. Joy and W. Hsu, U. S. Patent 7,163,966. (2007).

Google Scholar

[23] Z. Liu and G.L. Rempel, Preparation of superabsorbent polymers by crosslinking Acrylic Acid and Acrylamide Copolymers, J. of Applied Polymer Science. 67 (1997), Vol 67, 1345-1353.

DOI: 10.1002/(sici)1097-4628(19970516)64:7<1345::aid-app14>3.0.co;2-w

Google Scholar

[24] Information on http://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/relhum.html.

Google Scholar

[25] P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, New York, (1953).

Google Scholar

[26] M. Elliott, Superabsorbent Polymers, BASF Aktiengesellshaft, Ludwigshafen Germany, (2004).

Google Scholar