IrO2-Based Monolithic Electrodes for Efficient and Stable Oxygen Evolution Reaction in Acid

Article Preview

Abstract:

Monolithic electrodes for oxygen evolution reaction (OER) have been successfully synthesized by hydrothermal method. Prolonging the hydrothermal duration and subsequent annealing treatment can increase the OER activities and stabilities of the samples. The IrO2/Ti-60h@400 shows excellent performance, which requires an overpotential of 391 mV at 100 mA cm-2, and could keep good activity at 200 mA cm-2 for 40 hours in acid electrolyte.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

401-406

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, A comprehensive review on PEM water electrolysis, Int. J. Hydrogen. Energ. 38 (2013) 4901-34.

DOI: 10.1016/j.ijhydene.2013.01.151

Google Scholar

[2] M. Schalenbach, M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, Pressurized PEM water electrolysis: Efficiency and gas crossover, Int. J. Hydrogen. Energ. 38 (2013) 14921-33.

DOI: 10.1016/j.ijhydene.2013.09.013

Google Scholar

[3] C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction, J. Am. Chem. Soc. 135 (2013) 16977-87.

DOI: 10.1021/ja407115p

Google Scholar

[4] T. Reier, H.N. Nong, D. Teschner, R. Schlögl, P. Strasser, Electrocatalytic Oxygen Evolution Reaction in Acidic Environments - Reaction Mechanisms and Catalysts, Adv. Energy. Mater. 7 (2017) 1601275.

DOI: 10.1002/aenm.201601275

Google Scholar

[5] R. Omrani, B. Shabani, Review of gas diffusion layer for proton exchange membrane-based technologies with a focus on unitised regenerative fuel cells, Int. J. Hydrogen. Energ. 44 (2019) 3834-60.

DOI: 10.1016/j.ijhydene.2018.12.120

Google Scholar

[6] S.A. Grigoriev, P. Millet, S.A. Volobuev, V.N. Fateev, Optimization of porous current collectors for PEM water electrolysers, Int. J. Hydrogen. Energ. 34 (2009) 4968-73.

DOI: 10.1016/j.ijhydene.2008.11.056

Google Scholar

[7] R. Shan, T. Zhang, Z. Zhang, M. Kan, Q. Zan, Y. Zhao, A novel highly active nanostructured IrO2/Ti anode for water oxidation, Int. J. Hydrogen. Energ. 40 (2015) 14279-83.

DOI: 10.1016/j.ijhydene.2015.04.071

Google Scholar

[8] L. Wu, X. Liu, J. Hu, Electrodeposited SiO2 film: a promising interlayer of a highly active Ti electrode for the oxygen evolution reaction, J. Mater. Chem. A. 4 (2016) 11949-56.

DOI: 10.1039/c6ta03931f

Google Scholar

[9] S. Choe, B. Lee, M.K. Cho, H. Kim, D. Henkensmeier, S.J. Yoo, et al., Electrodeposited IrO2 /Ti electrodes as durable and cost-effective anodes in high-temperature polymer-membrane-electrolyte water electrolyzers, Appl. Catal. B: Environ. 226 (2018) 289-94.

DOI: 10.1016/j.apcatb.2017.12.037

Google Scholar

[10] B. Liu, C. Wang, Y. Chen, Surface determination and electrochemical behavior of IrO 2 -RuO 2 -SiO 2 ternary oxide coatings in oxygen evolution reaction application, Electrochim. Acta. 264 (2018) 350-7.

DOI: 10.1016/j.electacta.2018.01.141

Google Scholar

[11] W. Xu, Z. Lu, X. Sun, L. Jiang, X. Duan, Superwetting Electrodes for Gas-Involving Electrocatalysis, Accounts Chem. Res. 51 (2018) 1590-8.

DOI: 10.1021/acs.accounts.8b00070

Google Scholar

[12] M. Jiang, H. Wang, Y. Li, H. Zhang, G. Zhang, Z. Lu, et al., Superaerophobic RuO2 -Based Nanostructured Electrode for High-Performance Chlorine Evolution Reaction, Small. 13 (2017) 1602240.

DOI: 10.1002/smll.201602240

Google Scholar

[13] P. Liu, C. Hsu, M. Chuang, Hemin-mediated construction of iridium oxide with superior stability for the oxygen evolution reaction, J. Mater. Chem. A. 5 (2017) 2959-71.

DOI: 10.1039/c6ta10097j

Google Scholar

[14] G.C. Da Silva, N. Perini, E.A. Ticianelli, Effect of temperature on the activities and stabilities of hydrothermally prepared IrOx nanocatalyst layers for the oxygen evolution reaction, Appl. Catal. B: Environ. 218 (2017) 287-97.

DOI: 10.1016/j.apcatb.2017.06.044

Google Scholar

[15] S. Cherevko, T. Reier, A.R. Zeradjanin, Z. Pawolek, P. Strasser, K.J.J. Mayrhofer, Stability of nanostructured iridium oxide electrocatalysts during oxygen evolution reaction in acidic environment, Electrochem. Commun. 48 (2014) 81-5.

DOI: 10.1016/j.elecom.2014.08.027

Google Scholar

[16] J. Lim, D. Park, S.S. Jeon, C. Roh, J. Choi, D. Yoon, et al., Ultrathin IrO2 Nanoneedles for Electrochemical Water Oxidation, Adv. Funct. Mater. 28 (2018) 1704796.

DOI: 10.1002/adfm.201704796

Google Scholar

[17] W. Sun, Z. Wang, W.Q. Zaman, Z. Zhou, L. Cao, X. Gong, et al., Effect of lattice strain on the electro-catalytic activity of IrO2 for water splitting, Chem. Commun. 54 (2018) 996-9.

DOI: 10.1039/c7cc09580e

Google Scholar

[18] L.C. Seitz, C.F. Dickens, K. Nishio, Y. Hikita, J. Montoya, A. Doyle, et al., A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction, Science. 353 (2016) 1011.

DOI: 10.1126/science.aaf5050

Google Scholar

[19] G. Li, S. Li, M. Xiao, J. Ge, C. Liu, W. Xing, Nanoporous IrO2 catalyst with enhanced activity and durability for water oxidation owing to its micro/mesoporous structure, Nanoscale. 9 (2017) 9291-8.

DOI: 10.1039/c7nr02899g

Google Scholar

[20] D.F. Abbott, D. Lebedev, K. Waltar, M. Povia, M. Nachtegaal, E. Fabbri, et al., Iridium Oxide for the Oxygen Evolution Reaction: Correlation between Particle Size, Morphology, and the Surface Hydroxo Layer from Operando XAS, Chem. Mater. 28 (2016) 6591-604.

DOI: 10.1021/acs.chemmater.6b02625

Google Scholar

[21] Y. Matsumoto, New Types of Anodes for the Oxygen Evolution Reaction in Acidic Solution, J. Electrochem. Soc. 133 (1986) 2257.

DOI: 10.1149/1.2108389

Google Scholar

[22] H.B. Xu, Y.H. Lu, C.H. Li, J.Z. Hu, A novel IrO2 electrode with iridium–titanium oxide interlayers from a mixture of TiN nanoparticle and H2IrCl6 solution, J. Appl. Electrochem. 40 (2010) 719-27.

DOI: 10.1007/s10800-009-0049-2

Google Scholar

[23] J. Krýsa, L. Kule, R. Mráz, I. Roušar, Effect of coating thickness and surface treatment of titanium on the properties of IrO2 Ta2O5 anodes, J. Appl. Electrochem. 26 (1996) 999-1005.

DOI: 10.1007/bf00242194

Google Scholar