Crack Resistance and Width of Crack Opening of Beams with Hybrid Reinforcement Using BFRP and Metal Armature

Article Preview

Abstract:

The sustainable development of industry and society requires new approaches to the building structures design. The article presents the indices of strength, crack resistance and width of crack opening obtained as a result of experimental testing of beams with hybrid reinforcement with basalt plastic and metal armature. The following beams were examined for comparison purposes: the ferroconcrete beams of the control-series, and the twin beams reinforced only with basalt-plastic reinforcement. It was found that the replacement of the metal armature with basalt plastics led to an increase in strength, on average, by 40%. Similar strength indices were obtained for hybrid reinforcement beams. Crack resistance indices of hybrid reinforcement beams were found to be close to ferroconcrete beams of the control series. Crack resistance indices for these beams were also by 84... 89% higher in comparison with beams reinforced with basalt-plastics. The width of crack openings in hybrid reinforced beams did not exceed the maximum permissible norms at the operational level of loads (70% of destructive) and were smaller than in beams reinforced with basalt plastic reinforcement. Hybrid reinforcement efficiency has been established to improve the performance criteria of beams reinforced with composite armature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

149-157

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Afifi, M.Z., H.M. Mohamed, and B. Benmokrane, Theoretical stress–strain model for circular concrete columns confined by GFRP spirals and hoops. Engineering Structures, 2015. 102: pp.202-213.

DOI: 10.1016/j.engstruct.2015.08.020

Google Scholar

[2] G.H. Koch, et al., NACE IMPACT, International Measures of Prevention, Application, and Economics of Corrosion Technologies Study, (Houston, TX: NACE International, 2016), 216 pp.

Google Scholar

[3] fib, TG9.3 - FRP reinforcement in RC structures. Sprint-Digital-Druck, Stuttgart, (2007).

Google Scholar

[4] Fiore, V., et al., A review on basalt fibre and its composites. Composites Part B: Engineering, 2015. 74: pp.74-94.

DOI: 10.1016/j.compositesb.2014.12.034

Google Scholar

[5] El-Mogy, M., El-Ragaby, A., and El-Salakawy, E. (2010). Flexural behavior of continuous FRP-reinforced concrete beams. Journal of Composites for Construction, 14(6), 669-680.

DOI: 10.1061/(asce)cc.1943-5614.0000140

Google Scholar

[6] Leung, H., and Balendran, R. (2003). Flexural behavior of concrete beams internally reinforced with GFRP rods and steel rebars. Structural Survey, 21(4), 146-157.

DOI: 10.1108/02630800310507159

Google Scholar

[7] Rafi, M. M., and Nadjai, A. (2011). Behavior of hybrid (steel-CFRP) and CFRP barreinforced concrete beams in fire. Journal of Composite Materials, 45(15), 1573-1584.

DOI: 10.1177/0021998310385022

Google Scholar

[8] Lau, D., and Pam, H. J. (2010). Experimental study of hybrid FRP reinforced concrete beams. Engineering Structures, 32(12), 3857-3865.

DOI: 10.1016/j.engstruct.2010.08.028

Google Scholar

[9] DSTU B V.2.7-29-96. Budivelni materialy. Dribni zapovniuvachi pryrodni, iz vidkhodiv promyslovosti, shtuchni dlia budivelnykh materialiv, vyrobiv, konstruktsii ta robit. – K.: Derzhkommistobuduvannia Ukrainy, 1996. – 35s.

Google Scholar

[10] Zhelezobetonnie konstruktsyy iz betona na otkhodakh gornorudnoi i metallurgycheskoi promishlennosty / [Storozhenko L.Y., Shevchenko B.N., Ylenko V.M. y dr.]. – Kyev: Budivelnyk, 1982, – 72 s.

Google Scholar

[11] DSTU B V.2.7-176:2008 (EN206-1:2000, NEQ). Sumishi betonni ta beton. Zahalni tekhnichni umovy. – K.: Minrehionbud Ukrainy, 2010. – 109s.

Google Scholar

[12] Valovoi A., Koval P., Eremenko A., Valovoi M., Volkov S., Durability of beams with hybrid reinforcement from metal and basalt fiber reinforced polymer (BFRP) armature,, MATEC Web of Conferences 230, 02035 (2018) (https://doi.org/10.1051/matecconf/201823002035).

DOI: 10.1051/matecconf/201823002035

Google Scholar

[13] DSTU B V.2.7-46:2010. Tsementy zahalnobudivelnoho pryznachennia. Tekhnichni umovy. – K.: Ministerstvo rehionalnoho rozvytku ta budivnytstva Ukrainy, 2011. – 20s.

Google Scholar

[14] DSTU B V.2.7-29-96. Budivelni materialy. Dribni zapovniuvachi pryrodni, iz vidkhodiv promyslovosti, shtuchni dlia budivelnykh materialiv, vyrobiv, konstruktsii ta robit. – K.: Derzhkommistobuduvannia Ukrainy, 1996. – 35s.

Google Scholar

[15] DSTU B V.2.7-273:2011. Voda dlia betoniv i rozchyniv. Tekhnichni umovy (HOST 23732-79, MOD). – K.: Ministerstvo rehionalnoho rozvytku, budivnytstva ta zhytlovo-komunalnoho hospodarstva Ukrainy, 2012. – 13s.

Google Scholar

[16] DSTU B V.2.6-7-95 (HOST 8829-94). Vyroby budivelni betonni ta zalizobetonni zbirni. Metody vyprobuvan navantazhuvanniam. Pravyla otsinky mitsnosti, zhorstkosti ta trishchynostiikosti. – K.: Derzhavnyi komitet Ukrainy u spravakh mistobuduvannia i arkhitektury, 1997. – 34s.

Google Scholar

[17] Valovoi A., Eremenko A., Valovoi M., Volkov S., Research of the Deflections of Beams Reinforced with BFRP Armature and Hybrid Reinforcement Using Metal and BFRP Armature,, Actual Problems of Engineering Mechanics: Materials Science Forum. Trans Tech Publications Ltd, Switzerland (2019), Vol. 968, pp.301-308. (DOI: https://doi.org/10.4028/www.scientific.net/ MSF.968.301).

DOI: 10.4028/www.scientific.net/msf.968.301

Google Scholar

[18] EN 1992-1-1:2004, Eurocode 2 - Design of Concrete Structures. Part 1: General rules and rules, CEN, (2004).

Google Scholar

[19] ACI 318-08, Building Code Requirements for Structural Concrete, American Concrete Institute, (2008).

Google Scholar

[20] Japan Society of Civil Engineers (JSCE) 1997 «Recommendation for Design and Construction of Concrete Structures Using Continuous Fiber Reinforced Materials», Concrete Engineering Series 23, ed. by A. Machida, Research Committee on Continuous Fiber Reinforcing Materials, Tokyo, Japan, 325 p.

DOI: 10.14359/4268

Google Scholar

[21] ACI 440.1R-2006. Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars. Reported by ACI Committee, 2006. 440 p.

DOI: 10.14359/51700867

Google Scholar

[22] CAN/CSA-S806-12 (2012) Design and Construction of Building Components with Fibre-Reinforced Polymers, Canadian Standards Association.

Google Scholar

[23] CNR-DT 203/2006, Guide for the Design and Construction of Concrete Structures Reinforced with Fiber-Reinforced Polymer Bars, Rome, Italy, (2006).

Google Scholar

[24] DSTU-N B V.2.6-185:2012 Nastanova z proektuvannia ta vyhotovlennia betonnykh konstruktsii z nemetalevoiu kompozytnoiu armaturoiu na osnovi bazalto- i sklorovinhu. – K.: Minrehion Ukrainy, 2012. – 34s.

Google Scholar

[25] Betonni ta zalizobetonni konstruktsii. Osnovni polozhennia: DBN V.2.6-98:2009. – K.: Ukrarkhbudinform, 2011. – 71 s.

Google Scholar