Mortars Based on a Ternary Binder from Lime, Metakaolin and Calcium Hemihydrate

Article Preview

Abstract:

Normal-weight mortars with quartz sand filler and lightweight mortars with expanded perlite filler were prepared from a lime-metakaolin-gypsum binder. Mortar test samples were cured in a humid atmosphere and also in the laboratory ambient conditions. Development of hardening processes was studied by X-ray diffraction, thermal analysis and SEM-EDS observation. Compressive strength, drying shrinkage, bulk density and thermal conductivity of the mortars were determined. The presence of gypsum binder in the mixtures enabled formation of ettringite that caused expansion and reduced drying shrinkage of mortars with 20% content of gypsum binder.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-118

Citation:

Online since:

October 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Pavlík, M. Užáková, Effect of curing conditions on the properties of lime, lime–metakaolin and lime–zeolite mortars. Constr. Build. Mater. 102 (2016) 14-25.

DOI: 10.1016/j.conbuildmat.2015.10.128

Google Scholar

[2] O. Cizer, Competition between Carbonation and Hydration on the Hardening of Calcium Hydroxide and Calcium Silicate Binders, (PhD thesis) Univ. KU Leuven, Belgium, (2009).

DOI: 10.1533/9780857093080.589

Google Scholar

[3] O. Cizer, K. Van Balen, D. Van Gemert, Competition between hydration and carbonation in hydraulic lime and lime-pozzolana mortars. Advanced Mater. Res. Vol. 133-134 (2010)241-246.

DOI: 10.4028/www.scientific.net/amr.133-134.241

Google Scholar

[4] H.J. Kuzel, H. Pollmann, Hydration of C3A in the Presence of Ca(OH)2, CaSO4·2H2O and CaCO3, Cem. Concr. Res. 21 (1991) 885-895.

DOI: 10.1016/0008-8846(91)90183-i

Google Scholar

[5] W. Dosch, H. Keller, H. zur Strassen, Written discussion. In: Proc. 5th International Symp. Chem. Cem. Tokyo, 1969. Vol. II, pp.72-77.

Google Scholar

[6] M. Francois, G. Renaudin, O. Evrard, A cementitious compound with composition 3CaO·Al2O3·CaCO3·11H2O, Acta Crystallographica, Section C, Crystal Structure Communications C54 (1998) 1214-1217.

DOI: 10.1002/chin.199851002

Google Scholar

[7] R. Allmann, Refinement of the hybrid layer structure [Ca2Al(OH)6]+·[1/2SO4·3H2O]−, Neues Jahrbuch fur Mineralogie Monatshefte (1977) 136-144.

Google Scholar

[8] R. Fischer, H.J. Kuzel, Reinvestigation of the system C4A•nH2O–C4A•CO2•nH2O, Cem. Concr. Res. 12 (1982) 517-526.

DOI: 10.1016/0008-8846(82)90066-7

Google Scholar

[9] H.F.W. Taylor, Cement Chemistry, second ed., Thomas Telford Publishing, London, (1997).

Google Scholar

[10] G. Renaudin, M. Francois, O. Evrard, Order and disorder in the lamellar hydrated tetracalcium monocarboaluminate compound, Cem. Concr. Res. 29 (1999) 63-69.

DOI: 10.1016/s0008-8846(98)00184-7

Google Scholar

[11] T. Matschei, B. Lothenbach, F.P. Glasser, The AFm phase in Portland cement, Cem. Concr. Res. 37 (2007) 118–130.

DOI: 10.1016/j.cemconres.2006.10.010

Google Scholar

[12] D. Damidot, S. Stronach, A. Kindness, M. Atkins, F.P. Glasser, Thermodynamic investigation of the CaO–Al2O3–CaCO3–H2O closed system at 25 °C and the influence of Na2O. Cem. Concr. Res. 24 (1994) 563–572.

DOI: 10.1016/0008-8846(94)90145-7

Google Scholar

[13] T. Matschei, Thermodynamics of cement hydration, (PhD thesis), Univ. Aberdeen, (2007).

Google Scholar

[14] G. Hentschel, H.J. Kuzel, Strätlingit, 2CaO.Al2O3.SiO2.8H2O, ein neues Mineral, Neues Jahrbuch für Mineralogie Monatshefte (1976) 326-330.

Google Scholar

[15] S. Kwan, J. LaRosa, M.W. Grutzeck, 29Si and 27Al MASNMR study of stratlingite, J. Am. Ceram. Soc. 78 (1995) 1921–(1926).

DOI: 10.1111/j.1151-2916.1995.tb08910.x

Google Scholar

[16] R. Dron, Experimental and theoretical study of the CaO-Al2O3-SiO2-H2O system, in: 6th International Congr. Chem. Cem., Moscow, Vol. II, Book 1, 1976, pp.208-211.

Google Scholar

[17] D. Damidot, F.P. Glasser, Investigation of the CaO-Al2O3-SiO2-H2O system at 25°C by thermodynamic calculations, Cem. Concr. Res. 25 (1995) 22-28.

DOI: 10.1016/0008-8846(94)00108-b

Google Scholar

[18] P.S. de Silva, F.P. Glasser, Phase relations in the system CaO-Al2O3-SiO2-H2O relevant to metakaolin - calcium hydroxide hydration, Cem. Concr. Res. 23 (1993) 627-639.

DOI: 10.1016/0008-8846(93)90014-z

Google Scholar

[19] A. Santos-Silva, A. Gameiro, J. Grilo, R. Veiga, A. Velosa, Long-term behavior of lime–metakaolin pastes at ambient temperature and humid curing condition. Appl. Clay Sci. 88-89 (2014) 49-55.

DOI: 10.1016/j.clay.2013.12.016

Google Scholar

[20] A.S. Silva, A. Gameiro, J. Grilo, R. Veiga, A. Velosa, Long-term behavior of lime–metakaolin pastes at ambient temperature and humid curing condition. Appl Clay Sci 88-89 (2014) 49-55.

DOI: 10.1016/j.clay.2013.12.016

Google Scholar

[21] M.D. Andersen, H.J. Jakobsen, J. Skibsted, Incorporation of aluminum in the calcium silicate hydrate (C-S-H) of hydrated Portland cements: a high-field 27Al and 29Si MAS NMR investigation, Inorg. Chem. 42 (2003) 2280–2287.

DOI: 10.1021/ic020607b

Google Scholar

[22] X. Pardal, I. Pochard, A. Nonat, Experimental study of Si–Al substitution in calcium-silicate-hydrate (C-S-H) prepared under equilibrium conditions, Cem. Concr. Res. 39 (2009) 637–643.

DOI: 10.1016/j.cemconres.2009.05.001

Google Scholar

[23] E. L'Hôpital, B. Lothenbach, G. Le Saout, D. Kulik, K. Scrivener, Incorporation of aluminium in calcium-silicate-hydrates. Cem.Concre.Res. 75 (2015) 91-103.

DOI: 10.1016/j.cemconres.2015.04.007

Google Scholar

[24] V. Pavlík, J. Bisaha, Lightweight Mortars Based on Expanded Perlite, Key Engineering Materials, 776 (2018) 104-117.

DOI: 10.4028/www.scientific.net/kem.776.104

Google Scholar