Sensitivity Assessment of the Nonlinear Resonant Ultrasonic Spectroscopy for Concrete Damage Detection

Article Preview

Abstract:

Nonlinear Resonant Ultrasound Spectroscopy is a nondestructive acoustic method which is able to measure the bulk hysteretic nonlinearity. This method monitors the shift of the resonant frequency in response of variations in the excitation frequency amplitudes. Measurements were performed on concrete samples exposed to temperatures of 200, 400, 600, 800, 1000, 1200 °C. The elastic modulus values are given to compare the Nonlinear Resonant Ultrasound Spectroscopy (NRUS) sensitivity. These are calculated from the measured velocities of ultrasonic pulses (linear acoustic method) and from the bulk density. The strengths of the samples obtained by destructive methods are also given. Based on these results, the NRUS method can be described as a very sensitive indicator of damage in concrete.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-56

Citation:

Online since:

October 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Khoury: Effect of fire on concrete and concrete structures, Progress in Structural Engineering and Materials. Vol. 2 (2000), Issue 4, pp.429-447.

DOI: 10.1002/pse.51

Google Scholar

[2] M. Colombo and R. Felicetti: New NDT techniques for the assessment of fire-damaged concrete structures, Fire Safety Journal, Vol. 42 (2007), Issues 6–7, pp.461-472.

DOI: 10.1016/j.firesaf.2006.09.002

Google Scholar

[3] C. Payan, V. Garnier, and J. Moysan: Applying nonlinear resonant ultrasound spectroscopy to improving thermal damage assessment in concrete, The Journal of the Acoustical Society of America, Vol. 121 (2007), pp.125-130.

DOI: 10.1121/1.2710745

Google Scholar

[4] K. Van Den Abeele, P.A. Johnson and A. Sutin: Nonlinear Elastic Wave Spectroscopy (NEWS) Techniques to Discern Material Damage, Part I: Nonlinear Wave Modulation Spectroscopy (NWMS), Research in Nondestructive Evaluation, Vol. 12(2000), Issue 1, pp.17-30.

DOI: 10.1080/09349840009409646

Google Scholar

[5] S. Majhi, A. Mukherjee, N. V. George and B. Uy: Corrosion detection in steel bar: A time-frequency approach, NDT and E International, Vol. 107 (2019), 102150.

DOI: 10.1016/j.ndteint.2019.102150

Google Scholar

[6] K. Timčaková-Samarkova, M. Matysík and Z. Chobola: Possibilities of NUS and impact-echo methods for monitoring steel corrosion in concrete, Materiali in Tehnologije, Vol. 50 (2016), Issue 4, pp.565-570.

DOI: 10.17222/mit.2015.149

Google Scholar

[7] M.Á. Climent, M. Miró, J. Carbajo, P. Poveda, G. de Vera and J. Ramis: Use of non-linear ultrasonic techniques to detect cracks due to steel corrosion in reinforced concrete structures Materials, Vol. 12 (2019), Issue 5, 813.

DOI: 10.3390/ma12050813

Google Scholar

[8] M. Matysik, M. Korenska and I. Plskova: NDT of freeze-thaw damaged concrete specimens by nonlinear acoustic spectroscopy method, 10th International Conference of the Slovenian Society for Non-Destructive Testing: Application of Contemporary Non-Destructive Testing in Engineering, 2009, pp.317-323.

DOI: 10.5507/tots.2009.024

Google Scholar

[9] K. Van Den Abeele, J. Carmeliet, J. TenCate, and P. A. Johnson: Nonlinear elastic wave spectroscopy NEWS techniques to discern material damage, Part II: Single-mode nonlinear resonance acoustic spectroscopy, Research in Nondestructive Evaluation, Vol. 12 (2000), Issue 1, pp.34-42.

DOI: 10.1080/09349840009409647

Google Scholar

[10] T. Húlan, M. Knapek, P. Minárik, S. Csáki, T. Kaljuvee, and M. Uibu: Assessing the frost resistance of illite-based ceramics through the resonant frequency of free vibration and internal damping, AIP Conference Proceedings, 1866 (2017).

DOI: 10.1063/1.4994495

Google Scholar

[11] G. S. Miljković, I. S. Stojković and D. B. Denić: Generation and application of pseudorandom binary sequences using virtual instrumentation, Facta universitatis - Series: mathematics and informatics, Vol. 10 (2011), pp.51-58.

Google Scholar

[12] R. Štoudek, T. Trčka, M. Matysík, T. Vymazal and I. Plšková: Acoustic and Electromagnetic Emission of Lightweight Concrete with Polypropylene Fibers, Materiali in tehnologije, Vol. 50 (2016), Issue 4, pp.547-552.

DOI: 10.17222/mit.2015.138

Google Scholar

[13] S. Engelberg and H. Benjamin: Pseudorandom sequences and the measurement of the frequency response, IEEE Instrumentation & Measurement Magazine, Vol. 8 (2005), Issue 1. pp.54-59.

DOI: 10.1109/mim.2005.8456673

Google Scholar

[14] M. Matysík, L. Topolář, P. Daněk, T. Vymazal and I. Plšková: The Effect of Concrete Quality on the Acoustic Emission Parameters During Three-point Bending Fracture Test, Advanced Materials Research, Vol. 897 (2014), pp.149-152.

DOI: 10.4028/www.scientific.net/amr.897.149

Google Scholar

[15] C. Ferreira, L. C. Neves, A. Silva and J. de Brito: Stochastic maintenance models for ceramic claddings, Structure and Infrastructure Engineering, 2019, in press,.

DOI: 10.1080/15732479.2019.1652657

Google Scholar