The Influence of Phases Division Surface in Nanocomposites Polymer/2D-Nanofiller on their Reinforcement Degree - The Percolation Model

Article Preview

Abstract:

The simple percolation model, in which critical indices are defined by the form of a reinforcing component of nanostructured composite structure, was proposed for the description of reinforcement degree for nanostructured composites polymer/2D-nanofiller. The indicated critical indices are close by absolute values to standard percolation indices. The form of reinforcing component controls the type of nanostructured composite. It has been shown that reinforcement degree of these nanomaterials is independent on modulus of elasticity of nanofiller, but is defined by its structure (aggregation level), created in polymer matrix. The percolation indices of a percolation model, which are due to the form of reinforcing component and nanocomposite type, are defined by its main characteristic – the fraction of phases division surface in overall sample volume and are the basic factor, controlling reinforcement degree of nanostructured composites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

516-523

Citation:

Online since:

October 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.V. Kozlov, Yu.G. Yanovskii, G.E. Zaikov, Particulate-Filled Polymer Nanocomposites. Structure, Properties, Perspectives. Nova Science Publishers, Inc., New York, (2014).

Google Scholar

[2] G.V. Kozlov, A.K. Mikitaev, Structure and Properties of Nanocomposites Polymer/Organoclay. LAP LAMBERT Academic Publishing GmbH and Comp., Saarbrücken, (2013).

Google Scholar

[3] M. Moniruzzaman, K.I. Winey, Polymer nanocomposites containing carbon nanotubes, Macromolecules. 39 (2002) 5194-5205.

DOI: 10.1021/ma060733p

Google Scholar

[4] H. Kim, A.A. Abdala, C.W. Macosko, Graphene/polymer nanocomposites, Macromolecules. 45 (2010) 6515-6530.

DOI: 10.1021/ma100572e

Google Scholar

[5] R. Jan, P. May, A.P. Bell, A. Habib, U. Khan, J.N. Coleman, Enhancing the mechanical properties of BN nanosheet-polymer composites by uniaxial drawing, Nanoscale. 6 (2014) 4889-4895.

DOI: 10.1039/c3nr06711d

Google Scholar

[6] U. Khan, P. May, A. O'Neill, A.P. Bell, E. Boussac, A. Martin, J. Semple, J.N. Coleman, Polymer reinforcement using liquid-exfoliated boron nitride nanosheets, Nanoscale. 5 (2013) 581-587.

DOI: 10.1039/c2nr33049k

Google Scholar

[7] G.V. Kozlov, I.V. Dolbin, Structural aspects of strengthening nanostructured polymer/2D-nanofiller composites, Materials Physics and Mechanics. 32 (2017) 94-101.

Google Scholar

[8] G.V. Kozlov, I.V. Dolbin, S.A. Kuvshinova, O.I. Koifman, Comparative analysis of the reinforcement of polymers with 2D-nanofillers: organoclay and boron nitride, Doklady Physics. 63 (2018) 113-116.

DOI: 10.1134/s1028335818030060

Google Scholar

[9] G.V. Kozlov, I.V. Dolbin, The role of nanoparticle network in 2D nanofiller-reinforced polymer nanocomposites, Russian Physics Journal. 61 (2018) 974-978.

DOI: 10.1007/s11182-018-1485-4

Google Scholar

[10] G.V. Kozlov, I.V. Dolbin, The mechanisms of growth and the structure of 2D-nanofiller clusters in polymer media, Physics of the Solid State. 61 (2019) 39-43.

DOI: 10.1134/s1063783419010141

Google Scholar

[11] G.V. Kozlov, I.V. Dolbin, Reinforcement of polymer/2D-filler nanocomposites: basic postulates, Physics of the Solid State. 61 (2019) 1433-1436.

DOI: 10.1134/s1063783419080158

Google Scholar

[12] G.V. Kozlov, I.V. Dolbin, Dependence of the degree of reinforcement of polymer/2D-nanofiller nanocomposites on the nanofiller surface structure, Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 13 (2019) 1086-1089.

DOI: 10.1134/s1027451019060119

Google Scholar

[13] A.K. Mikitaev, G.V. Kozkov, G.E. Zaikov, Polymer Nanocomposites: Variety of Structural Forms and Applications, Nova Science Publishers, Inc., New York, (2008).

Google Scholar

[14] A.K. Mikitaev, G.V. Kozkov, Description of the degree of reinforcement of polymer/carbon nanotube nanocomposites in the framework of percolation models, Physics of the Solid State. 57 (2015) 974-977.

DOI: 10.1134/s1063783415050224

Google Scholar

[15] I.M. Sokolov, Dimensions and others geometrical critical indices in percolation theory, Physics – Uspekhi. 151 (1986) 221-248.

Google Scholar

[16] J.N. Coleman, M. Cadek, K.P. Ryan, A. Fonseca, J.B. Nady, W.J. Blau, M.S. Ferreira, Reinforcement of polymers with carbon nanotubes. The role of an ordered polymer interfacial region. Experimental and modeling, Polymer. 47 (2006) 8556-8561.

DOI: 10.1016/j.polymer.2006.10.014

Google Scholar

[17] P.A. Andrievsky, Nanomaterials: conception and modern problems, Russian Chemical J. 46 (2002) 50-56.

Google Scholar

[18] G.V. Kozlov, G.E. Zaikov, Structure of the Polymer Amorphous State, Brill Academic Publishers, Utrecht-Boston, (2004).

Google Scholar

[19] A.K. Mikitaev, G.V. Kozlov, The dependence of reinforcement degree of nanocomposites polymethylmethacrylate/functionalized carbon nanotubes on nanofiller structure, Fizika i Khimiya Obrabotki Materialov. 4 (2015) 65-69.

Google Scholar

[20] D.W. Schaefer, R.S. Justice, How nano are nanocomposites? Macromolecules. 40 (2007) 8501-8517.

DOI: 10.1021/ma070356w

Google Scholar

[21] A.K. Mikitaev, Yu.N. Karnet, G.V. Kozlov, Definition of the term nanocomposite, on the example of nanostructured polymer/organoclay composites, Nanomechanics Science and Technology. An International J. 7 (2016) 27-38.

DOI: 10.1615/nanomechanicsscitechnolintj.v7.i1.20

Google Scholar