Lipase Acrylic Resin Catalyzed Interesterification of Sewage Sludge in Micro Packed Bed Reactor: Box-Behnken Design

Article Preview

Abstract:

Ethyl acetate as acyl accepter have been used for sewage sludge biodiesel production in micro packed bed reactor. Lipase acrylic resin enzyme activity was investigated in the interesterification reaction of converting the sewage sludge into a biodiesel product. The main parameters affecting the process was adjusted via the design of Box-Behnken and approach of response surface then the optimum conditions were as follow (reaction time=15 h, ethyl acetate/oil ratio=24:1, temperature=40 °C and enzyme quantity=18 wt%) providing 95.78 % biodiesel yield. The lipase acrylic resin was examined under the optimum conditions for the reusability. the flow effect and the heating process of the micro packed bed reactor was investigated. The product biodiesel physicochemical properties were evaluated according to the ASTM D-6751-2 and found acceptable comparable to the mineral diesel properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

81-96

Citation:

Online since:

October 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Mishra, V. K., & Goswami, R. (2018). A review of production, properties and advantages of biodiesel. Biofuels, 9(2), 273-289.

Google Scholar

[2] Al-Dawody, M. F., Jazie, A. A., & Abbas, H. A. (2019). Experimental and simulation study for the effect of waste cooking oil methyl ester blended with diesel fuel on the performance and emissions of diesel engine. Alexandria Engineering Journal, 58(1), 9-17.

DOI: 10.1016/j.aej.2018.05.009

Google Scholar

[3] Jazie, A. A., Abed, S. A., Nuhma, M. J., & Mutar, M. A. (2019). Continuous biodiesel production in a packed bed reactor from microalgae Chlorella sp. using DBSA catalyst. Engineering Science and Technology, an International Journal.

DOI: 10.1016/j.jestch.2019.08.002

Google Scholar

[4] Jazie, A. A. (2019). DBSA-Catalyzed Sewage Sludge Conversion into Biodiesel in a CSTR: RSM Optimization and RTD Study. Journal of Engineering & Technological Sciences, 51(4).

DOI: 10.5614/j.eng.technol.sci.2019.51.4.6

Google Scholar

[5] Jazie, A. A., Alshebaney, E. Jadeen and Abed, S. A., In-Situ Dodecylbenzenesulfonic acid -Catalyzed Transesterification of Micro Algae Chlorella Sp. for Biodiesel Production,, 2019 International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET), Istanbul, Turkey, (2019).

DOI: 10.1109/pgsret.2019.8882674

Google Scholar

[6] Jazie, A. A., Abed, S. A. and H. Pramanik, DBSA-Catalyzed Biodiesel Production From Sewage Sludge In A Micro-Reactor: Box-Behnken Design Optimization,, 2019 International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET), Istanbul, Turkey, (2019).

DOI: 10.1109/pgsret.2019.8882724

Google Scholar

[7] Sakdasri, W., Sawangkeaw, R., & Ngamprasertsith, S. (2018). Techno-economic analysis of biodiesel production from palm oil with supercritical methanol at a low molar ratio. Energy, 152, 144-153.

DOI: 10.1016/j.energy.2018.03.125

Google Scholar

[8] Nehdi, I. A., Sbihi, H. M., Blidi, L. E., Rashid, U., Tan, C. P., & Al-Resayes, S. I. (2018). Biodiesel Production from Citrillus colocynthis Oil Using Enzymatic Based Catalytic Reaction and Characterization Studies. Protein and peptide letters, 25(2), 164-170.

DOI: 10.2174/0929866524666170223150839

Google Scholar

[9] Gog, A., Roman, M., Toşa, M., Paizs, C., & Irimie, F. D. (2012). Biodiesel production using enzymatic transesterification–current state and perspectives. Renewable Energy, 39(1), 10-16.

DOI: 10.1016/j.renene.2011.08.007

Google Scholar

[10] Dias, G. S., de Lima Luz Jr, L. F., Mitchell, D. A., & Krieger, N. (2017). Scale-up of biodiesel synthesis in a closed-loop packed-bed bioreactor system using the fermented solid produced by Burkholderia lata LTEB11. Chemical Engineering Journal, 316, 341-349.

DOI: 10.1016/j.cej.2017.01.106

Google Scholar

[11] Amini, Z., Ong, H. C., Harrison, M. D., Kusumo, F., Mazaheri, H., & Ilham, Z. (2017). Biodiesel production by lipase-catalyzed transesterification of Ocimum basilicum L.(sweet basil) seed oil. Energy Conversion and Management, 132, 82-90.

DOI: 10.1016/j.enconman.2016.11.017

Google Scholar

[12] Christopher, L. P., Kumar, H., & Zambare, V. P. (2014). Enzymatic biodiesel: challenges and opportunities. Applied Energy, 119, 497-520.

DOI: 10.1016/j.apenergy.2014.01.017

Google Scholar

[13] Hanif, M. A., Nisar, S., Akhtar, M. N., Nisar, N., & Rashid, N. (2018). Optimized production and advanced assessment of biodiesel: A review. International Journal of Energy Research.

DOI: 10.1002/er.3990

Google Scholar

[14] Hama, S., Noda, H., & Kondo, A. (2018). How lipase technology contributes to evolution of biodiesel production using multiple feedstocks. Current opinion in biotechnology, 50, 57-64.

DOI: 10.1016/j.copbio.2017.11.001

Google Scholar

[15] Amini, Z., Ilham, Z., Ong, H. C., Mazaheri, H., & Chen, W. H. (2017). State of the art and prospective of lipase-catalyzed transesterification reaction for biodiesel production. Energy Conversion and Management, 141, 339-353.

DOI: 10.1016/j.enconman.2016.09.049

Google Scholar

[16] Andrade, T. A., Errico, M., & Christensen, K. V. (2017). Influence of the reaction conditions on the enzyme catalyzed transesterification of castor oil: a possible step in biodiesel production. Bioresource technology, 243, 366-374.

DOI: 10.1016/j.biortech.2017.06.118

Google Scholar

[17] Yun, H., Wang, M., Feng, W., & Tan, T. (2013). Process simulation and energy optimization of the enzyme-catalyzed biodiesel production. Energy, 54, 84-96.

DOI: 10.1016/j.energy.2013.01.002

Google Scholar

[18] Chen, X., Li, J., Deng, L., Pedersen, J. N., Li, L., Guo, Z., .. & Xu, X. (2018). Biodiesel Production Using Lipases. In Lipid Modification by Enzymes and Engineered Microbes (pp.203-238).

DOI: 10.1016/b978-0-12-813167-1.00010-4

Google Scholar

[19] Nguyen, H. C., Huong, D. T. M., Juan, H. Y., Su, C. H., & Chien, C. C. (2018). Liquid Lipase-Catalyzed Esterification of Oleic Acid with Methanol for Biodiesel Production in the Presence of Superabsorbent Polymer: Optimization by Using Response Surface Methodology. Energies, 11(5), 1-12.

DOI: 10.3390/en11051085

Google Scholar

[20] Hama, S., & Kondo, A. (2013). Enzymatic biodiesel production: an overview of potential feedstocks and process development. Bioresource technology, 135, 386-395.

DOI: 10.1016/j.biortech.2012.08.014

Google Scholar

[21] Bajaj, A., Lohan, P., Jha, P. N., & Mehrotra, R. (2010). Biodiesel production through lipase catalyzed transesterification: an overview. Journal of Molecular Catalysis B: Enzymatic, 62(1), 9-14.

DOI: 10.1016/j.molcatb.2009.09.018

Google Scholar

[22] Tavares, G. R., Gonçalves, J. E., dos Santos, W. D., & da Silva, C. (2017). Enzymatic interesterification of crambe oil assisted by ultrasound. Industrial crops and products, 97, 218-223.

DOI: 10.1016/j.indcrop.2016.12.022

Google Scholar

[23] Kim, S. J., Jung, S. M., Park, Y. C., & Park, K. (2007). Lipase catalyzed transesterification of soybean oil using ethyl acetate, an alternative acyl acceptor. Biotechnology and bioprocess engineering, 12(4), 441.

DOI: 10.1007/bf02931068

Google Scholar

[24] Patil, P. D., Reddy, H., Muppaneni, T., & Deng, S. (2017). Biodiesel fuel production from algal lipids using supercritical methyl acetate (glycerin-free) technology. Fuel, 195, 201-207.

DOI: 10.1016/j.fuel.2016.12.060

Google Scholar

[25] Subhedar, P. B., & Gogate, P. R. (2016). Ultrasound assisted intensification of biodiesel production using enzymatic interesterification. Ultrasonics sonochemistry, 29, 67-75.

DOI: 10.1016/j.ultsonch.2015.09.006

Google Scholar

[26] Casas, A., Ramos, M. J., & Perez, A. (2011). New trends in biodiesel production: Chemical interesterification of sunflower oil with methyl acetate. Biomass and bioenergy, 35(5), 1702-1709.

DOI: 10.1016/j.biombioe.2011.01.003

Google Scholar

[27] Xu, Y., Du, W., & Liu, D. (2005). Study on the kinetics of enzymatic interesterification of triglycerides for biodiesel production with methyl acetate as the acyl acceptor. Journal of Molecular Catalysis B: Enzymatic, 32(5-6), 241-245.

DOI: 10.1016/j.molcatb.2004.12.013

Google Scholar

[28] Maddikeri, G. L., Pandit, A. B., & Gogate, P. R. (2013). Ultrasound assisted interesterification of waste cooking oil and methyl acetate for biodiesel and triacetin production. Fuel processing technology, 116, 241-249.

DOI: 10.1016/j.fuproc.2013.07.004

Google Scholar

[29] Razack, S. A., & Duraiarasan, S. (2016). Response surface methodology assisted biodiesel production from waste cooking oil using encapsulated mixed enzyme. Waste Management, 47, 98-104.

DOI: 10.1016/j.wasman.2015.07.036

Google Scholar

[30] Casas, A., Ramos, M. J., & Pérez, Á. (2011). Kinetics of chemical interesterification of sunflower oil with methyl acetate for biodiesel and triacetin production. Chemical engineering journal, 171(3), 1324-1332.

DOI: 10.1016/j.cej.2011.05.037

Google Scholar

[31] Du, W., Xu, Y., Liu, D., & Zeng, J. (2004). Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. Journal of Molecular Catalysis B: Enzymatic, 30(3-4), 125-129.

DOI: 10.1016/j.molcatb.2004.04.004

Google Scholar

[32] Usai, E. M., Gualdi, E., Solinas, V., & Battistel, E. (2010). Simultaneous enzymatic synthesis of FAME and triacetyl glycerol from triglycerides and methyl acetate. Bioresource technology, 101(20), 7707-7712.

DOI: 10.1016/j.biortech.2010.05.044

Google Scholar

[33] Goembira, F., & Saka, S. (2013). Optimization of biodiesel production by supercritical methyl acetate. Bioresource technology, 131, 47-52.

DOI: 10.1016/j.biortech.2012.12.130

Google Scholar

[34] Usai, E. M., Gualdi, E., Solinas, V., & Battistel, E. (2010). Simultaneous enzymatic synthesis of FAME and triacetyl glycerol from triglycerides and methyl acetate. Bioresource technology, 101(20), 7707-7712.

DOI: 10.1016/j.biortech.2010.05.044

Google Scholar

[35] Cao, E., Brett, G., Miedziak, P. J., Douthwaite, J. M., Barrass, S., McMillan, P. F., .. & Gavriilidis, A. (2017). A micropacked-bed multi-reactor system with in situ raman analysis for catalyst evaluation. Catalysis Today, 283, 195-201.

DOI: 10.1016/j.cattod.2016.06.007

Google Scholar

[36] Mills, P. L., Quiram, D. J., & Ryley, J. F. (2007). Microreactor technology and process miniaturization for catalytic reactions—A perspective on recent developments and emerging technologies. Chemical Engineering Science, 62(24), 6992-7010.

DOI: 10.1016/j.ces.2007.09.021

Google Scholar

[37] Jähnisch, K., Hessel, V., Löwe, H., & Baerns, M. (2004). Chemistry in microstructured reactors. Angewandte Chemie International Edition, 43(4), 406-446.

DOI: 10.1002/anie.200300577

Google Scholar

[38] Hartman, R. L., & Jensen, K. F. (2009). Microchemical systems for continuous-flow synthesis. Lab on a Chip, 9(17), 2495-2507.

DOI: 10.1039/b906343a

Google Scholar

[39] Daly, F., & Tonkovich, L. (2004). Enabling offshore production of methanol by use of an isopotential reactor. In Studies in surface science and catalysis (Vol. 147, pp.415-420). Elsevier.

DOI: 10.1016/s0167-2991(04)80087-9

Google Scholar

[40] Hayer, F., Bakhtiary-Davijany, H., Myrstad, R., Holmen, A., Pfeifer, P., & Venvik, H. J. (2013). Characteristics of integrated micro packed bed reactor-heat exchanger configurations in the direct synthesis of dimethyl ether. Chemical Engineering and Processing: Process Intensification, 70, 77-85.

DOI: 10.1016/j.cep.2013.03.021

Google Scholar

[41] Jensen, K. F. (2001). Microreaction engineering—is small better?. Chemical Engineering Science, 56(2), 293-303.

DOI: 10.1016/s0009-2509(00)00230-x

Google Scholar

[42] He, W., Fang, Z., Ji, D., Zhang, K., & Guo, K. (2014). Optimization of biodiesel production by continuous microflow system with online separation. Monatshefte für Chemie-Chemical Monthly, 145(1), 223-227.

DOI: 10.1007/s00706-013-0999-2

Google Scholar

[43] Sun, P., Sun, J., Yao, J., Zhang, L., & Xu, N. (2010). Continuous production of biodiesel from high acid value oils in microstructured reactor by acid-catalyzed reactions. Chemical engineering journal, 162(1), 364-370.

DOI: 10.1016/j.cej.2010.04.064

Google Scholar

[44] T. Jarosch Kai, Y. Tonkovich Anna Lee, T. Perry Steven, D. Kuhlmann, Y. Wang,Microchannel reactors for intensifying gas-to-liquid technology, in: Microreac-tor Technology and Process Intensification, American Chemical Society, 2005,p.258–272.

DOI: 10.1021/bk-2005-0914.ch016

Google Scholar

[45] Tonkovich, A. Y., Perry, S., Wang, Y., Qiu, D., LaPlante, T., & Rogers, W. A. (2004). Microchannel process technology for compact methane steam reforming. Chemical Engineering Science, 59(22-23), 4819-4824.

DOI: 10.1016/j.ces.2004.07.098

Google Scholar

[46] Bakhtiary-Davijany, H., Hayer, F., Phan, X. K., Myrstad, R., Venvik, H. J., Pfeifer, P., & Holmen, A. (2011). Characteristics of an integrated micro packed bed reactor-heat exchanger for methanol synthesis from syngas. Chemical engineering journal, 167(2-3), 496-503.

DOI: 10.1016/j.cej.2010.08.074

Google Scholar

[47] Ferreira, S. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandao, G. C., .. & Dos Santos, W. N. L. (2007). Box-Behnken design: an alternative for the optimization of analytical methods. Analytica chimica acta, 597(2), 179-186.

DOI: 10.1016/j.aca.2007.07.011

Google Scholar

[48] Myers, R. H., Montgomery, D. C., & Christine, M. (2009). Anderson-Cook. Response surface methodology: process and product optimization using designed experiments, 705.

Google Scholar

[49] Montgomery, D. C. (2017). Design and analysis of experiments. John Wiley & Sons.

Google Scholar

[50] Qi, J., Zhu, F., Wei, X., Zhao, L., Xiong, Y., Wu, X., & Yan, F. (2016). Comparison of biodiesel production from sewage sludge obtained from the A 2/O and MBR processes by in situ transesterification. Waste Management, 49, 212-220.

DOI: 10.1016/j.wasman.2016.01.029

Google Scholar

[51] Wu, X., Zhu, F., Qi, J., & Zhao, L. (2016). Biodiesel production from sewage sludge by using alkali catalyst catalyze. Procedia Environmental Sciences, 31, 26-30.

DOI: 10.1016/j.proenv.2016.02.004

Google Scholar

[52] Arun, S. B., Suresh, R., & Avinash, E. (2017). Optimization of Biodiesel Production from Yellow Oleander (Thevetia Peruviana) using Response Surface Methodology. Materials Today: Proceedings, 4(8), 7293-7301.

DOI: 10.1016/j.matpr.2017.07.059

Google Scholar

[53] Omar, W. N. N. W., & Amin, N. A. S. (2011). Biodiesel production from waste cooking oil over alkaline modified zirconia catalyst. Fuel Processing Technology, 92(12), 2397-2405.

DOI: 10.1016/j.fuproc.2011.08.009

Google Scholar

[54] Mohamad, M., Ngadi, N., Wong, S. L., Jusoh, M., & Yahya, N. Y. (2017). Prediction of biodiesel yield during transesterification process using response surface methodology. Fuel, 190, 104-112.

DOI: 10.1016/j.fuel.2016.10.123

Google Scholar

[55] Miladinović, M. R., Stamenković, O. S., Banković, P. T., Milutinović-Nikolić, A. D., Jovanović, D. M., & Veljković, V. B. (2016). Modeling and optimization of sunflower oil methanolysis over quicklime bits in a packed bed tubular reactor using the response surface methodology. Energy Conversion and Management, 130, 25-33.

DOI: 10.1016/j.enconman.2016.10.020

Google Scholar

[56] Ullah, Z., Bustam, M. A., & Man, Z. (2015). Biodiesel production from waste cooking oil by acidic ionic liquid as a catalyst. Renewable Energy, 77, 521-526.

DOI: 10.1016/j.renene.2014.12.040

Google Scholar

[57] Chen, X., Du, W., & Liu, D. (2008). Response surface optimization of biocatalytic biodiesel production with acid oil. Biochemical Engineering Journal, 40(3), 423-429.

DOI: 10.1016/j.bej.2008.01.012

Google Scholar

[58] Jazie, A. A., Pramanik, H., & Sinha, A. S. K. (2013). Transesterification of peanut and rapeseed oils using waste of animal bone as cost effective catalyst. Materials for Renewable and Sustainable Energy, 2(2), 11.

DOI: 10.1007/s40243-013-0011-4

Google Scholar

[59] Lam, M. K., & Lee, K. T. (2010). Accelerating transesterification reaction with biodiesel as co-solvent: A case study for solid acid sulfated tin oxide catalyst. Fuel, 89(12), 3866-3870.

DOI: 10.1016/j.fuel.2010.07.005

Google Scholar

[60] Obadiah, A., Swaroopa, G. A., Kumar, S. V., Jeganathan, K. R., & Ramasubbu, A. (2012). Biodiesel production from palm oil using calcined waste animal bone as catalyst. Bioresource technology, 116, 512-516.

DOI: 10.1016/j.biortech.2012.03.112

Google Scholar

[61] Razack, S. A., & Duraiarasan, S. (2016). Response surface methodology assisted biodiesel production from waste cooking oil using encapsulated mixed enzyme. Waste Management, 47, 98-104.

DOI: 10.1016/j.wasman.2015.07.036

Google Scholar

[62] Calero, J., Verdugo, C., Luna, D., Sancho, E. D., Luna, C., Posadillo, A., ... & Romero, A. A. (2014). Selective ethanolysis of sunflower oil with Lipozyme RM IM, an immobilized Rhizomucor miehei lipase, to obtain a biodiesel-like biofuel, which avoids glycerol production through the monoglyceride formation. New biotechnology, 31(6), 596-601.

DOI: 10.1016/j.nbt.2014.02.008

Google Scholar

[63] Waghmare, G. V., & Rathod, V. K. (2016). Ultrasound assisted enzyme catalyzed hydrolysis of waste cooking oil under solvent free condition. Ultrasonics sonochemistry, 32, 60-67.

DOI: 10.1016/j.ultsonch.2016.01.033

Google Scholar

[64] Wu, H., Liu, Y., Zhang, J., & Li, G. (2014). In situ reactive extraction of cottonseeds with methyl acetate for biodiesel production using magnetic solid acid catalysts. Bioresource technology, 174, 182-189.

DOI: 10.1016/j.biortech.2014.10.026

Google Scholar

[65] Maddikeri, G. L., Pandit, A. B., & Gogate, P. R. (2013). Ultrasound assisted interesterification of waste cooking oil and methyl acetate for biodiesel and triacetin production. Fuel processing technology, 116, 241-249.

DOI: 10.1016/j.fuproc.2013.07.004

Google Scholar

[66] Du, W., Xu, Y., Liu, D., & Zeng, J. (2004). Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. Journal of Molecular Catalysis B: Enzymatic, 30(3-4), 125-129.

DOI: 10.1016/j.molcatb.2004.04.004

Google Scholar

[67] Nguyen, H. C., Liang, S. H., Chen, S. S., Su, C. H., Lin, J. H., & Chien, C. C. (2018). Enzymatic production of biodiesel from insect fat using methyl acetate as an acyl acceptor: Optimization by using response surface methodology. Energy Conversion and Management, 158, 168-175.

DOI: 10.1016/j.enconman.2017.12.068

Google Scholar

[68] Nguyen, H. C., Liang, S. H., Doan, T. T., Su, C. H., & Yang, P. C. (2017). Lipase-catalyzed synthesis of biodiesel from black soldier fly (Hermetica illucens): Optimization by using response surface methodology. Energy Conversion and Management, 145, 335-342.

DOI: 10.1016/j.enconman.2017.05.010

Google Scholar

[69] Poppe, J. K., Fernandez-Lafuente, R., Rodrigues, R. C., & Ayub, M. A. Z. (2015). Enzymatic reactors for biodiesel synthesis: present status and future prospects. Biotechnology Advances, 33(5), 511-525.

DOI: 10.1016/j.biotechadv.2015.01.011

Google Scholar

[70] Poppe, J. K., Matte, C. R., Olave de Freitas, V., Fernandez‐Lafuente, R., Rodrigues, R. C., & Záchia Ayub, M. A. (2018). Enzymatic synthesis of ethyl esters from waste oil using mixtures of lipases in a plug‐flow packed‐bed continuous reactor. Biotechnology progress.

DOI: 10.1002/btpr.2650

Google Scholar

[71] Nie, K., Xie, F., Wang, F., & Tan, T. (2006). Lipase catalyzed methanolysis to produce biodiesel: optimization of the biodiesel production. Journal of Molecular Catalysis B: Enzymatic, 43(1-4), 142-147.

DOI: 10.1016/j.molcatb.2006.07.016

Google Scholar