[1]
Mishra, V. K., & Goswami, R. (2018). A review of production, properties and advantages of biodiesel. Biofuels, 9(2), 273-289.
Google Scholar
[2]
Al-Dawody, M. F., Jazie, A. A., & Abbas, H. A. (2019). Experimental and simulation study for the effect of waste cooking oil methyl ester blended with diesel fuel on the performance and emissions of diesel engine. Alexandria Engineering Journal, 58(1), 9-17.
DOI: 10.1016/j.aej.2018.05.009
Google Scholar
[3]
Jazie, A. A., Abed, S. A., Nuhma, M. J., & Mutar, M. A. (2019). Continuous biodiesel production in a packed bed reactor from microalgae Chlorella sp. using DBSA catalyst. Engineering Science and Technology, an International Journal.
DOI: 10.1016/j.jestch.2019.08.002
Google Scholar
[4]
Jazie, A. A. (2019). DBSA-Catalyzed Sewage Sludge Conversion into Biodiesel in a CSTR: RSM Optimization and RTD Study. Journal of Engineering & Technological Sciences, 51(4).
DOI: 10.5614/j.eng.technol.sci.2019.51.4.6
Google Scholar
[5]
Jazie, A. A., Alshebaney, E. Jadeen and Abed, S. A., In-Situ Dodecylbenzenesulfonic acid -Catalyzed Transesterification of Micro Algae Chlorella Sp. for Biodiesel Production,, 2019 International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET), Istanbul, Turkey, (2019).
DOI: 10.1109/pgsret.2019.8882674
Google Scholar
[6]
Jazie, A. A., Abed, S. A. and H. Pramanik, DBSA-Catalyzed Biodiesel Production From Sewage Sludge In A Micro-Reactor: Box-Behnken Design Optimization,, 2019 International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET), Istanbul, Turkey, (2019).
DOI: 10.1109/pgsret.2019.8882724
Google Scholar
[7]
Sakdasri, W., Sawangkeaw, R., & Ngamprasertsith, S. (2018). Techno-economic analysis of biodiesel production from palm oil with supercritical methanol at a low molar ratio. Energy, 152, 144-153.
DOI: 10.1016/j.energy.2018.03.125
Google Scholar
[8]
Nehdi, I. A., Sbihi, H. M., Blidi, L. E., Rashid, U., Tan, C. P., & Al-Resayes, S. I. (2018). Biodiesel Production from Citrillus colocynthis Oil Using Enzymatic Based Catalytic Reaction and Characterization Studies. Protein and peptide letters, 25(2), 164-170.
DOI: 10.2174/0929866524666170223150839
Google Scholar
[9]
Gog, A., Roman, M., Toşa, M., Paizs, C., & Irimie, F. D. (2012). Biodiesel production using enzymatic transesterification–current state and perspectives. Renewable Energy, 39(1), 10-16.
DOI: 10.1016/j.renene.2011.08.007
Google Scholar
[10]
Dias, G. S., de Lima Luz Jr, L. F., Mitchell, D. A., & Krieger, N. (2017). Scale-up of biodiesel synthesis in a closed-loop packed-bed bioreactor system using the fermented solid produced by Burkholderia lata LTEB11. Chemical Engineering Journal, 316, 341-349.
DOI: 10.1016/j.cej.2017.01.106
Google Scholar
[11]
Amini, Z., Ong, H. C., Harrison, M. D., Kusumo, F., Mazaheri, H., & Ilham, Z. (2017). Biodiesel production by lipase-catalyzed transesterification of Ocimum basilicum L.(sweet basil) seed oil. Energy Conversion and Management, 132, 82-90.
DOI: 10.1016/j.enconman.2016.11.017
Google Scholar
[12]
Christopher, L. P., Kumar, H., & Zambare, V. P. (2014). Enzymatic biodiesel: challenges and opportunities. Applied Energy, 119, 497-520.
DOI: 10.1016/j.apenergy.2014.01.017
Google Scholar
[13]
Hanif, M. A., Nisar, S., Akhtar, M. N., Nisar, N., & Rashid, N. (2018). Optimized production and advanced assessment of biodiesel: A review. International Journal of Energy Research.
DOI: 10.1002/er.3990
Google Scholar
[14]
Hama, S., Noda, H., & Kondo, A. (2018). How lipase technology contributes to evolution of biodiesel production using multiple feedstocks. Current opinion in biotechnology, 50, 57-64.
DOI: 10.1016/j.copbio.2017.11.001
Google Scholar
[15]
Amini, Z., Ilham, Z., Ong, H. C., Mazaheri, H., & Chen, W. H. (2017). State of the art and prospective of lipase-catalyzed transesterification reaction for biodiesel production. Energy Conversion and Management, 141, 339-353.
DOI: 10.1016/j.enconman.2016.09.049
Google Scholar
[16]
Andrade, T. A., Errico, M., & Christensen, K. V. (2017). Influence of the reaction conditions on the enzyme catalyzed transesterification of castor oil: a possible step in biodiesel production. Bioresource technology, 243, 366-374.
DOI: 10.1016/j.biortech.2017.06.118
Google Scholar
[17]
Yun, H., Wang, M., Feng, W., & Tan, T. (2013). Process simulation and energy optimization of the enzyme-catalyzed biodiesel production. Energy, 54, 84-96.
DOI: 10.1016/j.energy.2013.01.002
Google Scholar
[18]
Chen, X., Li, J., Deng, L., Pedersen, J. N., Li, L., Guo, Z., .. & Xu, X. (2018). Biodiesel Production Using Lipases. In Lipid Modification by Enzymes and Engineered Microbes (pp.203-238).
DOI: 10.1016/b978-0-12-813167-1.00010-4
Google Scholar
[19]
Nguyen, H. C., Huong, D. T. M., Juan, H. Y., Su, C. H., & Chien, C. C. (2018). Liquid Lipase-Catalyzed Esterification of Oleic Acid with Methanol for Biodiesel Production in the Presence of Superabsorbent Polymer: Optimization by Using Response Surface Methodology. Energies, 11(5), 1-12.
DOI: 10.3390/en11051085
Google Scholar
[20]
Hama, S., & Kondo, A. (2013). Enzymatic biodiesel production: an overview of potential feedstocks and process development. Bioresource technology, 135, 386-395.
DOI: 10.1016/j.biortech.2012.08.014
Google Scholar
[21]
Bajaj, A., Lohan, P., Jha, P. N., & Mehrotra, R. (2010). Biodiesel production through lipase catalyzed transesterification: an overview. Journal of Molecular Catalysis B: Enzymatic, 62(1), 9-14.
DOI: 10.1016/j.molcatb.2009.09.018
Google Scholar
[22]
Tavares, G. R., Gonçalves, J. E., dos Santos, W. D., & da Silva, C. (2017). Enzymatic interesterification of crambe oil assisted by ultrasound. Industrial crops and products, 97, 218-223.
DOI: 10.1016/j.indcrop.2016.12.022
Google Scholar
[23]
Kim, S. J., Jung, S. M., Park, Y. C., & Park, K. (2007). Lipase catalyzed transesterification of soybean oil using ethyl acetate, an alternative acyl acceptor. Biotechnology and bioprocess engineering, 12(4), 441.
DOI: 10.1007/bf02931068
Google Scholar
[24]
Patil, P. D., Reddy, H., Muppaneni, T., & Deng, S. (2017). Biodiesel fuel production from algal lipids using supercritical methyl acetate (glycerin-free) technology. Fuel, 195, 201-207.
DOI: 10.1016/j.fuel.2016.12.060
Google Scholar
[25]
Subhedar, P. B., & Gogate, P. R. (2016). Ultrasound assisted intensification of biodiesel production using enzymatic interesterification. Ultrasonics sonochemistry, 29, 67-75.
DOI: 10.1016/j.ultsonch.2015.09.006
Google Scholar
[26]
Casas, A., Ramos, M. J., & Perez, A. (2011). New trends in biodiesel production: Chemical interesterification of sunflower oil with methyl acetate. Biomass and bioenergy, 35(5), 1702-1709.
DOI: 10.1016/j.biombioe.2011.01.003
Google Scholar
[27]
Xu, Y., Du, W., & Liu, D. (2005). Study on the kinetics of enzymatic interesterification of triglycerides for biodiesel production with methyl acetate as the acyl acceptor. Journal of Molecular Catalysis B: Enzymatic, 32(5-6), 241-245.
DOI: 10.1016/j.molcatb.2004.12.013
Google Scholar
[28]
Maddikeri, G. L., Pandit, A. B., & Gogate, P. R. (2013). Ultrasound assisted interesterification of waste cooking oil and methyl acetate for biodiesel and triacetin production. Fuel processing technology, 116, 241-249.
DOI: 10.1016/j.fuproc.2013.07.004
Google Scholar
[29]
Razack, S. A., & Duraiarasan, S. (2016). Response surface methodology assisted biodiesel production from waste cooking oil using encapsulated mixed enzyme. Waste Management, 47, 98-104.
DOI: 10.1016/j.wasman.2015.07.036
Google Scholar
[30]
Casas, A., Ramos, M. J., & Pérez, Á. (2011). Kinetics of chemical interesterification of sunflower oil with methyl acetate for biodiesel and triacetin production. Chemical engineering journal, 171(3), 1324-1332.
DOI: 10.1016/j.cej.2011.05.037
Google Scholar
[31]
Du, W., Xu, Y., Liu, D., & Zeng, J. (2004). Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. Journal of Molecular Catalysis B: Enzymatic, 30(3-4), 125-129.
DOI: 10.1016/j.molcatb.2004.04.004
Google Scholar
[32]
Usai, E. M., Gualdi, E., Solinas, V., & Battistel, E. (2010). Simultaneous enzymatic synthesis of FAME and triacetyl glycerol from triglycerides and methyl acetate. Bioresource technology, 101(20), 7707-7712.
DOI: 10.1016/j.biortech.2010.05.044
Google Scholar
[33]
Goembira, F., & Saka, S. (2013). Optimization of biodiesel production by supercritical methyl acetate. Bioresource technology, 131, 47-52.
DOI: 10.1016/j.biortech.2012.12.130
Google Scholar
[34]
Usai, E. M., Gualdi, E., Solinas, V., & Battistel, E. (2010). Simultaneous enzymatic synthesis of FAME and triacetyl glycerol from triglycerides and methyl acetate. Bioresource technology, 101(20), 7707-7712.
DOI: 10.1016/j.biortech.2010.05.044
Google Scholar
[35]
Cao, E., Brett, G., Miedziak, P. J., Douthwaite, J. M., Barrass, S., McMillan, P. F., .. & Gavriilidis, A. (2017). A micropacked-bed multi-reactor system with in situ raman analysis for catalyst evaluation. Catalysis Today, 283, 195-201.
DOI: 10.1016/j.cattod.2016.06.007
Google Scholar
[36]
Mills, P. L., Quiram, D. J., & Ryley, J. F. (2007). Microreactor technology and process miniaturization for catalytic reactions—A perspective on recent developments and emerging technologies. Chemical Engineering Science, 62(24), 6992-7010.
DOI: 10.1016/j.ces.2007.09.021
Google Scholar
[37]
Jähnisch, K., Hessel, V., Löwe, H., & Baerns, M. (2004). Chemistry in microstructured reactors. Angewandte Chemie International Edition, 43(4), 406-446.
DOI: 10.1002/anie.200300577
Google Scholar
[38]
Hartman, R. L., & Jensen, K. F. (2009). Microchemical systems for continuous-flow synthesis. Lab on a Chip, 9(17), 2495-2507.
DOI: 10.1039/b906343a
Google Scholar
[39]
Daly, F., & Tonkovich, L. (2004). Enabling offshore production of methanol by use of an isopotential reactor. In Studies in surface science and catalysis (Vol. 147, pp.415-420). Elsevier.
DOI: 10.1016/s0167-2991(04)80087-9
Google Scholar
[40]
Hayer, F., Bakhtiary-Davijany, H., Myrstad, R., Holmen, A., Pfeifer, P., & Venvik, H. J. (2013). Characteristics of integrated micro packed bed reactor-heat exchanger configurations in the direct synthesis of dimethyl ether. Chemical Engineering and Processing: Process Intensification, 70, 77-85.
DOI: 10.1016/j.cep.2013.03.021
Google Scholar
[41]
Jensen, K. F. (2001). Microreaction engineering—is small better?. Chemical Engineering Science, 56(2), 293-303.
DOI: 10.1016/s0009-2509(00)00230-x
Google Scholar
[42]
He, W., Fang, Z., Ji, D., Zhang, K., & Guo, K. (2014). Optimization of biodiesel production by continuous microflow system with online separation. Monatshefte für Chemie-Chemical Monthly, 145(1), 223-227.
DOI: 10.1007/s00706-013-0999-2
Google Scholar
[43]
Sun, P., Sun, J., Yao, J., Zhang, L., & Xu, N. (2010). Continuous production of biodiesel from high acid value oils in microstructured reactor by acid-catalyzed reactions. Chemical engineering journal, 162(1), 364-370.
DOI: 10.1016/j.cej.2010.04.064
Google Scholar
[44]
T. Jarosch Kai, Y. Tonkovich Anna Lee, T. Perry Steven, D. Kuhlmann, Y. Wang,Microchannel reactors for intensifying gas-to-liquid technology, in: Microreac-tor Technology and Process Intensification, American Chemical Society, 2005,p.258–272.
DOI: 10.1021/bk-2005-0914.ch016
Google Scholar
[45]
Tonkovich, A. Y., Perry, S., Wang, Y., Qiu, D., LaPlante, T., & Rogers, W. A. (2004). Microchannel process technology for compact methane steam reforming. Chemical Engineering Science, 59(22-23), 4819-4824.
DOI: 10.1016/j.ces.2004.07.098
Google Scholar
[46]
Bakhtiary-Davijany, H., Hayer, F., Phan, X. K., Myrstad, R., Venvik, H. J., Pfeifer, P., & Holmen, A. (2011). Characteristics of an integrated micro packed bed reactor-heat exchanger for methanol synthesis from syngas. Chemical engineering journal, 167(2-3), 496-503.
DOI: 10.1016/j.cej.2010.08.074
Google Scholar
[47]
Ferreira, S. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandao, G. C., .. & Dos Santos, W. N. L. (2007). Box-Behnken design: an alternative for the optimization of analytical methods. Analytica chimica acta, 597(2), 179-186.
DOI: 10.1016/j.aca.2007.07.011
Google Scholar
[48]
Myers, R. H., Montgomery, D. C., & Christine, M. (2009). Anderson-Cook. Response surface methodology: process and product optimization using designed experiments, 705.
Google Scholar
[49]
Montgomery, D. C. (2017). Design and analysis of experiments. John Wiley & Sons.
Google Scholar
[50]
Qi, J., Zhu, F., Wei, X., Zhao, L., Xiong, Y., Wu, X., & Yan, F. (2016). Comparison of biodiesel production from sewage sludge obtained from the A 2/O and MBR processes by in situ transesterification. Waste Management, 49, 212-220.
DOI: 10.1016/j.wasman.2016.01.029
Google Scholar
[51]
Wu, X., Zhu, F., Qi, J., & Zhao, L. (2016). Biodiesel production from sewage sludge by using alkali catalyst catalyze. Procedia Environmental Sciences, 31, 26-30.
DOI: 10.1016/j.proenv.2016.02.004
Google Scholar
[52]
Arun, S. B., Suresh, R., & Avinash, E. (2017). Optimization of Biodiesel Production from Yellow Oleander (Thevetia Peruviana) using Response Surface Methodology. Materials Today: Proceedings, 4(8), 7293-7301.
DOI: 10.1016/j.matpr.2017.07.059
Google Scholar
[53]
Omar, W. N. N. W., & Amin, N. A. S. (2011). Biodiesel production from waste cooking oil over alkaline modified zirconia catalyst. Fuel Processing Technology, 92(12), 2397-2405.
DOI: 10.1016/j.fuproc.2011.08.009
Google Scholar
[54]
Mohamad, M., Ngadi, N., Wong, S. L., Jusoh, M., & Yahya, N. Y. (2017). Prediction of biodiesel yield during transesterification process using response surface methodology. Fuel, 190, 104-112.
DOI: 10.1016/j.fuel.2016.10.123
Google Scholar
[55]
Miladinović, M. R., Stamenković, O. S., Banković, P. T., Milutinović-Nikolić, A. D., Jovanović, D. M., & Veljković, V. B. (2016). Modeling and optimization of sunflower oil methanolysis over quicklime bits in a packed bed tubular reactor using the response surface methodology. Energy Conversion and Management, 130, 25-33.
DOI: 10.1016/j.enconman.2016.10.020
Google Scholar
[56]
Ullah, Z., Bustam, M. A., & Man, Z. (2015). Biodiesel production from waste cooking oil by acidic ionic liquid as a catalyst. Renewable Energy, 77, 521-526.
DOI: 10.1016/j.renene.2014.12.040
Google Scholar
[57]
Chen, X., Du, W., & Liu, D. (2008). Response surface optimization of biocatalytic biodiesel production with acid oil. Biochemical Engineering Journal, 40(3), 423-429.
DOI: 10.1016/j.bej.2008.01.012
Google Scholar
[58]
Jazie, A. A., Pramanik, H., & Sinha, A. S. K. (2013). Transesterification of peanut and rapeseed oils using waste of animal bone as cost effective catalyst. Materials for Renewable and Sustainable Energy, 2(2), 11.
DOI: 10.1007/s40243-013-0011-4
Google Scholar
[59]
Lam, M. K., & Lee, K. T. (2010). Accelerating transesterification reaction with biodiesel as co-solvent: A case study for solid acid sulfated tin oxide catalyst. Fuel, 89(12), 3866-3870.
DOI: 10.1016/j.fuel.2010.07.005
Google Scholar
[60]
Obadiah, A., Swaroopa, G. A., Kumar, S. V., Jeganathan, K. R., & Ramasubbu, A. (2012). Biodiesel production from palm oil using calcined waste animal bone as catalyst. Bioresource technology, 116, 512-516.
DOI: 10.1016/j.biortech.2012.03.112
Google Scholar
[61]
Razack, S. A., & Duraiarasan, S. (2016). Response surface methodology assisted biodiesel production from waste cooking oil using encapsulated mixed enzyme. Waste Management, 47, 98-104.
DOI: 10.1016/j.wasman.2015.07.036
Google Scholar
[62]
Calero, J., Verdugo, C., Luna, D., Sancho, E. D., Luna, C., Posadillo, A., ... & Romero, A. A. (2014). Selective ethanolysis of sunflower oil with Lipozyme RM IM, an immobilized Rhizomucor miehei lipase, to obtain a biodiesel-like biofuel, which avoids glycerol production through the monoglyceride formation. New biotechnology, 31(6), 596-601.
DOI: 10.1016/j.nbt.2014.02.008
Google Scholar
[63]
Waghmare, G. V., & Rathod, V. K. (2016). Ultrasound assisted enzyme catalyzed hydrolysis of waste cooking oil under solvent free condition. Ultrasonics sonochemistry, 32, 60-67.
DOI: 10.1016/j.ultsonch.2016.01.033
Google Scholar
[64]
Wu, H., Liu, Y., Zhang, J., & Li, G. (2014). In situ reactive extraction of cottonseeds with methyl acetate for biodiesel production using magnetic solid acid catalysts. Bioresource technology, 174, 182-189.
DOI: 10.1016/j.biortech.2014.10.026
Google Scholar
[65]
Maddikeri, G. L., Pandit, A. B., & Gogate, P. R. (2013). Ultrasound assisted interesterification of waste cooking oil and methyl acetate for biodiesel and triacetin production. Fuel processing technology, 116, 241-249.
DOI: 10.1016/j.fuproc.2013.07.004
Google Scholar
[66]
Du, W., Xu, Y., Liu, D., & Zeng, J. (2004). Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. Journal of Molecular Catalysis B: Enzymatic, 30(3-4), 125-129.
DOI: 10.1016/j.molcatb.2004.04.004
Google Scholar
[67]
Nguyen, H. C., Liang, S. H., Chen, S. S., Su, C. H., Lin, J. H., & Chien, C. C. (2018). Enzymatic production of biodiesel from insect fat using methyl acetate as an acyl acceptor: Optimization by using response surface methodology. Energy Conversion and Management, 158, 168-175.
DOI: 10.1016/j.enconman.2017.12.068
Google Scholar
[68]
Nguyen, H. C., Liang, S. H., Doan, T. T., Su, C. H., & Yang, P. C. (2017). Lipase-catalyzed synthesis of biodiesel from black soldier fly (Hermetica illucens): Optimization by using response surface methodology. Energy Conversion and Management, 145, 335-342.
DOI: 10.1016/j.enconman.2017.05.010
Google Scholar
[69]
Poppe, J. K., Fernandez-Lafuente, R., Rodrigues, R. C., & Ayub, M. A. Z. (2015). Enzymatic reactors for biodiesel synthesis: present status and future prospects. Biotechnology Advances, 33(5), 511-525.
DOI: 10.1016/j.biotechadv.2015.01.011
Google Scholar
[70]
Poppe, J. K., Matte, C. R., Olave de Freitas, V., Fernandez‐Lafuente, R., Rodrigues, R. C., & Záchia Ayub, M. A. (2018). Enzymatic synthesis of ethyl esters from waste oil using mixtures of lipases in a plug‐flow packed‐bed continuous reactor. Biotechnology progress.
DOI: 10.1002/btpr.2650
Google Scholar
[71]
Nie, K., Xie, F., Wang, F., & Tan, T. (2006). Lipase catalyzed methanolysis to produce biodiesel: optimization of the biodiesel production. Journal of Molecular Catalysis B: Enzymatic, 43(1-4), 142-147.
DOI: 10.1016/j.molcatb.2006.07.016
Google Scholar