Effect of High Temperature Treatment in Ar Atmosphere on the Tensile Strength and Structure of SiC Fiber

Article Preview

Abstract:

The properties and structure changes of SiC fiber in high temperature determine the service temperature of the reinforced ceramic matrix composites, so the properties of SiC fibers under high temperature are very important. The SiC-A and SiC-B fibers were treated at 1200, 1350 and 1600°C in Ar atmosphere. Then the tensile strength was measured, the microstructure and composition of the fibers were analyzed by SEM, EDS, XRD and AES. The results show that the tensile strength of SiC-A and SiC-B decrease slowly at 1200 and 1350°C, but decrease rapidly at 1600°C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

159-164

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Naslain. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview, Compos. Sci. Techonl. 64 (2004) 155-170.

DOI: 10.1016/s0266-3538(03)00230-6

Google Scholar

[2] Z. Su, L. Zhang, Y. Li, etal. Rapid preparation of SiC fibers using a curing route of electron irradiation in a low oxygen concentration atmosphere, J. Am. Ceram. Soc. 98 (2017) 2014-2017.

DOI: 10.1111/jace.13649

Google Scholar

[3] M.Wang, Z.G. Dong et al. Application of Continuous Fiber Reinforced Ceramic Matrix Composites in Aeroengine, Aero. Manuf. Technol. 6 (2014) 10-13.

Google Scholar

[4] L.T. Zhang, L.F. Cheng. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites, Acta. Mater. Compos. Sin. 24 (2007) 1-6.

Google Scholar

[5] J. J. Sha, T. Hinoki, AM.and A. Kohy. Microstructure and mechanical properties of Hi-Nicalon™ Type S fibers annealed and crept in various oxygen partial pressures, Mater. Charct. 60(2009) 796–802.

DOI: 10.1016/j.matchar.2009.01.017

Google Scholar

[6] A. R. Bunsell, A.Piant. A review of the development of three generations of small diameter silicon carbide fibers, J. Mater. Sci. 41 (2006) 823-839.

DOI: 10.1007/s10853-006-6566-z

Google Scholar

[7] A. Younes, A. Seidel, T. Engler, et al. Mechanical behavior of carbon and glass filament yarns under high temperatures for composites applications, J.Text. I. 104 (2013) 251-259.

DOI: 10.1080/00405000.2012.717752

Google Scholar

[8] G. S. Bibbo, P. M. Benson, C. G. Pantano. Effect of carbon monoxide partial pressure on the high-temperature decomposition of Nicalon fiber, J. Mater. Sci. 6 (1991) 5075-5080.

DOI: 10.1007/bf00549894

Google Scholar

[9] D. J. Pysher, K. C. Goretta, R. S. Hodder, et al. Strength of ceramic fibers at elevated temperature, J. Am. Ceram. Soc. 72 (1998) 284-288.

Google Scholar

[10] T. Mah, N. L. Hecht, H. M. Kim, et al. Thermal stability of SiC fibres (Nicalon), J. Mater. Sci. 19 (1984) 1191-1201.

DOI: 10.1007/bf01120029

Google Scholar

[11] T. J. Clark, M. Jaffe, J. Rabe, et al. Thermal Stability Characterization of SiC Fiber: I, Mechanical Property and Chemical Structure Effects, Ceram. Eng. Sci. Proc. 7(1986) 901-913.

Google Scholar

[12] ZH. M.SU, L.F. Chen. Effect of heating treatment on microstructure and property of NL 202 SiC fiber, J. Funct. Mater. 46 (2015) 23-26.

Google Scholar

[13] F.C. Wang. Modern analysis and testing methods for materials, BIT, Beijing, (2005).

Google Scholar

[14] J. J. Fan, Z. D. Chang, C. H. Tao. Research progress of failure analysis of EBCs, Fail. Anal. Prev. 12 (2017) 386-390.

Google Scholar