Study of Thermal Behaviour of EPDM/SBR Blends and Carbon Nanocoatings Deposited by Sputtering

Article Preview

Abstract:

In this study, the effect of SBR concentration (10 Phr, 20 Phr & 30 Phr ) on the thermal behavior of EPDM/SBR blends was studied. Thermogravimetric analysis (TGA) was used to check weight loss of samples as function of temperature by heating upto 600°C. X-ray diffraction (XRD) was performed to determine quality and % crystallinity of the elastomer blends. It was seen that % crystallinity improved with an increase in the content of SBR in EPDM/SBR blends. TGA revealed that the thermal stability of EPDM/SBR blends has improved by 17% than neat EPDM. Carbon nano-coatings produced by sputtering have no beneficial influence on thermal behaviour of elastomers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

116-120

Citation:

Online since:

February 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Holden, G., Thermoplastic elastomers, in Rubber technology. 1987, Springer. pp.465-481.

Google Scholar

[2] Usuki, A., A. Tukigase, and M.-j. Kato, Preparation and properties of EPDM–clay hybrids. Polym. 2002. 43(8): pp.2185-2189.

DOI: 10.1016/s0032-3861(02)00013-7

Google Scholar

[3] Varkey, J.T., S. Augustine, and S. Thomas, Thermal degradation of natural rubber/styrene butadiene rubber latex blends by thermogravimetric method. Polym.-Plast. Technol. Eng. 39 (2000) 415-435.

DOI: 10.1081/ppt-100100038

Google Scholar

[4] Nair, T.M., et al., Dynamic mechanical analysis of ethylene–propylene–diene monomer rubber and styrene–butadiene rubber blends. J. Appl. Plom. Sci. 112 (2009) 72-81.

DOI: 10.1002/app.29367

Google Scholar

[5] Fröhlich, J., W. Niedermeier, and H.-D. Luginsland, The effect of filler–filler and filler–elastomer interaction on rubber reinforcement. Comp. Part A: Appl. Sci. Manuf. 36 (2005) 449-460.

DOI: 10.1016/j.compositesa.2004.10.004

Google Scholar

[6] Alipour, A., et al., Elastomer nanocomposites based on NR/EPDM/organoclay: morphology and properties. Intern. Polym. Proc, 26 (2011) 48-55.

DOI: 10.3139/217.2381

Google Scholar

[7] El-Nashar, D., The compatibilization of EPDM/SBR blends by EPDM-graft-styrene copolymer. Polym.-Plast. Technol. Eng. 43 (2005) 1425-1441.

DOI: 10.1081/ppt-200030213

Google Scholar

[8] Da Costa, H.M., V.D. Ramos, and M.C. Rocha, Analysis of thermal properties and impact strength of PP/SRT, PP/EPDM and PP/SRT/EPDM mixtures in single screw extruder. Polym. Test. 25 (2006) 498-503.

DOI: 10.1016/j.polymertesting.2006.02.003

Google Scholar

[9] Vishvanathperumal, S. and G. Anand, Effect of Nanoclay/Nanosilica on the Mechanical Properties, Abrasion and Swelling Resistance of EPDM/SBR Composites. Silicon, 21 (2019) 1-17.

DOI: 10.1007/s12633-019-00291-6

Google Scholar

[10] Hafez, M., et al., Some Physical Properties of SBR/NBR Rubber Blends-Loaded with Nano-Sized Black Fillers. Journal of Modern Trends in Physics Research, 2019. 19: pp.1-10.

DOI: 10.19138/mtpr/(18)1-10

Google Scholar

[11] Ghoreishi, A., M. Koosha, and N. Nasirizadeh, Modification of bitumen by EPDM blended with hybrid nanoparticles: physical, thermal, and rheological properties. J. Thermoplast. Comp. Mater. 33 (2020) 343-356.

DOI: 10.1177/0892705718805536

Google Scholar

[12] Samaržija-Jovanović, S., et al., Ethylene-Propylene-Diene Rubber-Based Nanoblends: Preparation, Characterization and Applications, in Rubber Nano Blends. 2017, Springer. pp.281-349.

DOI: 10.1007/978-3-319-48720-5_9

Google Scholar

[13] Dearnaley, G. and J.H. Arps, Biomedical applications of diamond-like carbon (DLC) coatings: A review. Surf. Coat. Technol. 200 (2005) 2518-2524.

DOI: 10.1016/j.surfcoat.2005.07.077

Google Scholar

[14] Tyagi, A., et al., A critical review of diamond like carbon coating for wear resistance applications. Intern. J. Refrac. Met. Hard Mater. 78 (2019) 107-122.

Google Scholar

[15] Williams, P., The sputtering process and sputtered ion emission. Surf. Sci. 90 (1979) 588-634.

Google Scholar

[16] Greco, R., et al., Polyolefin blends: 2. Effect of EPR composition on structure, morphology and mechanical properties of iPP/EPR alloys. Polym. 28 (1987) 1929-1936.

DOI: 10.1016/0032-3861(87)90302-8

Google Scholar

[17] Mon, S.G., Y.J.V. Ruban, and D.V. Roy, Synthesis of kaolinite-filled EPDM rubber composites by solution intercalation: structural characterization and studies on mechanical properties. Appl. Nanosci. 1 (2011) 131-135.

DOI: 10.1007/s13204-011-0018-z

Google Scholar

[18] Allahbakhsh, A., et al., Cure kinetics and chemorheology of EPDM/graphene oxide nanocomposites. Thermochi. Acta, 563 (2013) 22-32.

DOI: 10.1016/j.tca.2013.04.010

Google Scholar

[19] Libby, P.A. and T.R. Blake, Burning carbon particles in the presence of water vapor. Comb. Flame, 41 (1981) 123-147.

DOI: 10.1016/0010-2180(81)90047-x

Google Scholar

[20] Choudhary, V., H. Varma, and I. Varma, Polyolefin blends: effect of EPDM rubber on crystallization, morphology and mechanical properties of polypropylene/EPDM blends. 1. Polymer, 32 (1991) 2534-2540.

DOI: 10.1016/0032-3861(91)90332-d

Google Scholar

[21] Tobing, S.D., Co-curing of NR/EPDM rubber bands, 1989, Google Patents.

Google Scholar

[22] Motaung, T.E., A.S. Luyt, and S. Thomas, Morphology and properties of NR/EPDM rubber blends filled with small amounts of titania nanoparticles. Polym. Compo. 32 (2011) 1289-1296.

DOI: 10.1002/pc.21150

Google Scholar