[1]
Ben Ayed. F, Bouaziz. J, Bouzouita. K, Pressureless Sintering Of Fluorapatite Under Oxygen Atmosphere, Journal Of The European Ceramic Society. 20 (8) (2000) 1069–1076.
DOI: 10.1016/s0955-2219(99)00272-1
Google Scholar
[2]
Boughton. O. R, Ma. S, Zhao. S, Arnold. M, Lewis. A, Hansen. U, Cobb. J. P, Giuliani. F, Abel. R. L, Measuring Bone Stiffness Using Spherical Indentation. (2018) 1–18.
DOI: 10.1371/journal.pone.0200475
Google Scholar
[3]
Costa. M. C, Eltes. P, Lazary. A, Varga. P. P, Vicecontie. M, Dall'Ara. E, Biomechanical Assessment Of Vertebrae With Lytic Metastases With Subject- Specific Finite Element Models, Journal Of The Mechanical Behavior Of Biomedical Materials. 98 (2019) 268–290.
DOI: 10.1016/j.jmbbm.2019.06.027
Google Scholar
[4]
Dorozhkin. S. V, Calcium Orthophosphates : Occurrence , Properties And Major Applications, Bioceramics Development And Applications. 4 (2) (2014) 20.
DOI: 10.4172/2090-5025.1000081
Google Scholar
[5]
Follet. H, Farlay D, Bala. Y, Viguet-Carrin. S, Gineyts. E, Burt-Pichat. B, Chapurlat. R, Determinants Of Microdamage In Elderly Human Vertebral Trabecular Bone. 8 (2) (2013) 10.
DOI: 10.1371/journal.pone.0055232
Google Scholar
[6]
Gopi. J. A, Nando. G. B, Preparation And Characterization Of Nanohydroxyapatite-Based Nanocomposites Derived From Immiscible Blends of Thermoplastic Polyurethane And Polydimethylsiloxane Rubber, Journal Of Thermoplastic Composite. 25 (2015).
DOI: 10.1177/0892705715604675
Google Scholar
[7]
Hoffler. C. E, Moore. K. E, Kozloff. K, Zysset. P. K, Brown. M. B, Goldstein. S. A, Heterogeneity Of Bone Lamellar-Level Elastic Moduli, Bone. 26 (6) (2000) 603–609.
DOI: 10.1016/s8756-3282(00)00268-4
Google Scholar
[8]
Makuch. A. M, Skalski. K. R, Human Cancellous Bone Mechanical Properties And Penetrator Geometry In Nanoindentation Tests, Acta Of Bioengineering And Biomechanics. 20 (3) (2018) 153–164.
Google Scholar
[9]
Marco A. Lopez-Heredia, Sariibrahimoglu. K, Yang. W, Bohner. M, Yamashita. D, Kunstar A, John A. Jansen, Influence Of The Pore Generator On The Evolution Of The Mechanical Properties And The Porosity And Interconnectivity Of A Calcium Phosphate Cement, Acta Biomaterialia. 8 (1) (2012) 404–414.
DOI: 10.1016/j.actbio.2011.08.010
Google Scholar
[10]
Nyman. J. S, Granke. M, Singleton. R. C, Pharr. G. M, Tissue-Level Mechanical Properties Of Bone Contributing To Fracture Risk. 14 (4) (2017) 138–150.
DOI: 10.1007/s11914-016-0314-3
Google Scholar
[11]
Ohman. C, Zwierzak. I, Baleani. M, Viceconti. M, Human Bone Hardness Seems To Depend On Tissue Type But Not On Anatomical Site In The Long Bones Of An Old Subject, Journal Of Engineering In Medicine. 227 (2) (2012) 200–206.
DOI: 10.1177/0954411912459424
Google Scholar
[12]
Osterhoff. G, Morgan. E. F, Shefelbine. S. J, Karim. L, Mcnamara. L. M, Augat. P, Bone Mechanical Properties And Changes With Osteoporosis, Injury, Int. J. Care Injured. 47 (2016) 11–20.
DOI: 10.1016/s0020-1383(16)47003-8
Google Scholar
[13]
Palaniswamy. M, Yie. L. W, Mechanical Properties Of The Human Vertebrae Between Normal, Post Corrective And Post Operative. (2014) 188–193.
DOI: 10.1109/roma.2014.7295886
Google Scholar
[14]
Patel. R.R, Noshchenko A, Carpenter. R.D., Baldini. T, Frick. C.P, Patel. V.V, Yakacki. C.M., Evaluation And Prediction Of Human Lumbar Vertebrae Endplate Mechanical Properties Using Indentation And Computed Tomography, Journal Of Biomechanical Engineering. 140 (2018), 1–9.
DOI: 10.1115/1.4040252
Google Scholar
[15]
Pawlikowski. M, Skalski. K, Bańczerowski. J, Makuch. A, Jankowski. K, Stress – Strain Characteristic Of Human Trabecular Bone Based On Depth Sensing Indentation Measurements, Biocybernetics And Biomedical Engineering. 7 (2017) 272–280.
DOI: 10.1016/j.bbe.2017.01.002
Google Scholar
[16]
Poinern. G. E. J, Brundavanam. R. K, Le. X. T, Nicholls. P. K, Cake. M. A, Fawcett. D, The Synthesis, Characterization And In Vivo Study Of A Bioceramic For Potential Tissue Regeneration Applications. (2014) 1–9.
DOI: 10.1038/srep06235
Google Scholar
[17]
Shi. X, Wang. S, Zhang. Y, Wang. Y, Yang. Z, Zhou. X, Fan. D, Hydroxyapatite-Coated Sillicone Rubber Enhanced Cell Adhesion And It May Be Through The Interaction Of EF1 B And C -Actin. 9 (11) (2-014) 1–11.
DOI: 10.1371/journal.pone.0111503
Google Scholar
[18]
Swain. S. K, Bhattacharyya. S, Sarkar. D, Preparation Of Porous Scaffold From Hydroxyapatite Powders. Materials Science And Engineering. 31 (6) (2010) 1240–1244.
DOI: 10.1016/j.msec.2010.11.014
Google Scholar
[19]
Tomanik. M, Nikodem. A, Filipiak. J, Microhardness Of Human Cancellous Bone Tissue In Progressive Hip Osteoarthritis, Journal Of The Mechanical Behavior Of Biomedical Materials. 64 (2016) 86–93.
DOI: 10.1016/j.jmbbm.2016.07.022
Google Scholar
[20]
Torres. A. M, Matheny. J. B, Keaveny. T. M, Taylor. D, Rimnac. C. M, Hernandez. C. J, Material Heterogeneity In Cancellous Bone Promotes Deformation Recovery After Mechanical Failure. 113 (11) (2016) 6.
DOI: 10.1073/pnas.1520539113
Google Scholar
[21]
Wen. J, Li. Y, Zuo. Y, Zhou. G, Li. J, Jiang. L, Xu. W, Preparation And Characterization Of Nano-Hydroxyapatite / Silicone Rubber Composite, Materials Letters. 62 (2008) 3307–3309.
DOI: 10.1016/j.matlet.2008.02.032
Google Scholar
[22]
Xavier. F, Jauregui. J.J., Cornish. N, Jason-Rousseau. R, Chatterjee. D, Feuer. G, Saha. S, Regional Variations In Shear Strength And Density Of The Human Thoracic Vertebral Endplate And Trabecular Bone. (2017).
DOI: 10.14444/4007
Google Scholar