Springback Behavior of High Strength Titanium Tube after Bending under Variations of Material Property Parameters

Article Preview

Abstract:

In order to reveal the springback behavior of high strength TA18 tube after numerical control (NC) bending under the variations of material property parameters, the finite element (FE) model of the whole process for the high strength TA18 tube during NC bending was established under ABAQUS code and its stability was evaluated. Then, using the model, the springback behavior after tube bending under the variations of material property parameters was studied, and the significance of material property parameters on springback was revealed. The results show that the springback angle decreases with the increase of the Young’s modulus, hardening exponent and thickness anisotropy exponent or with the decrease of the strength coefficient and yield stress. The significance of material property parameters on springback of the high strength TA18 tube after NC bending from high to low are the yield stress, Young’s modulus, strength coefficient, thickness anisotropy exponent and hardening exponent.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-18

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Yang, H. Li, Z.Y. Zhang, M. Zhan, J. Liu and G.J. Li: Chinese J. Aeronaut. Vol. 25, pp.1-12. (2012).

Google Scholar

[2] J. Fang, S.Q. Lu, K.L. Wang, J.X. Tang and Z.J. Yao: J. Xi'an Jiaotong Univ. Vol. 49, pp.136-142. (2015).

Google Scholar

[3] H.A. Al-Qureshi and A. Russo: Mater. Design Vol. 23, pp.217-222. (2002).

Google Scholar

[4] S.Q. Lu, J. Fang and K.L. Wang: Chinese J. Aeronaut. Vol. 29, pp.1436-1444. (2016).

Google Scholar

[5] M. Zhan, Y. Wang, H. Yang and H. Long: J. Mater. Process. Technol. Vol. 236, pp.123-137. (2016).

Google Scholar

[6] W.Y. Wu, P. Zhang, X.Q. Zeng, L. Jin, S.S. Yao and A.A. Luo: Mater. Sci. Eng. A Vol. 486, pp.596-601. (2008).

Google Scholar

[7] H. Li, H. Yang, Y.L. Tian, and K.P. Shi: Appl. Mech. Mater. Vol. 184-185, pp.196-200. (2012).

Google Scholar

[8] M. Salem, M. Farzin, M. Kadkhodaei and M. Nakhaei: Int. J. Adv. Manuf. Tech. Vol. 79, pp.1071-1080. (2015).

Google Scholar

[9] J. Fang, S.Q. Lu, K.L. Wang and Z.J. Yao: Proc. IMechE. Part B: J. Eng. Manuf. Vol. 231, pp.1783-1792. (2017).

Google Scholar

[10] F.F. Song, H. Yang, H. Li, M. Zhan and G.J. Li: Chinese J. Aeronaut. Vol. 26, pp.1336-1245. (2013).

Google Scholar

[11] M. Shahabi and A. Nayebi: Struct. Eng. Mech. Vol. 56, pp.369-383. (2015).

Google Scholar

[12] H. Li, H. Yang, F.F. Song, Y. Wang and G.J. Li: Rare Met. Mater. Eng. Vol.43, pp.64-71. (2014).

Google Scholar

[13] J. Fang, C. Liang, S.Q. Lu and K.L. Wang: Trans. Nonferrous Met. Soc. China Vol. 28, pp.309-318. (2018).

Google Scholar

[14] R.J. Gu, H. Yang, M. Zhan and H. Li: Trans. Nonferrous Met. Soc. China Vol. 16, p. s631-s638. (2006).

Google Scholar