A Model Based Study of Fatigue Life Prediction for Multifarious Loadings

Article Preview

Abstract:

Loading history makes fatigue crack propagation modelling complex. This article focus on life prediction models which take into consideration the variability of fluctuating loads. In particular it emphases on the comparative studies of prediction models involving the significance of one model’s over another. The paper studies models based on multifarious loadings (constant amplitude load, variable amplitude load, overload/underload etc.). The major parameters of load interaction modelling are plasticity, crack closure, effective stress intensity, effective stress ratio and damage accumulation. For large deformation, elasto-plastic fracture mechanics based models are also included. The complexity of models, their features and focusing on their limitation and strengths are stated with various conditions and also validation of models with experimental data are reported. The paper speculates on the directions the study of crack propagation will take in future.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

296-327

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. I. Stephens, A. Fatemi, R. Stephens, and H. O. Fuchs, Metal Fatigue in Engineering, John Wiley & Sons (2000).

Google Scholar

[2] M. A. Miner, Cumulative damage in fatigue, J. App. Mech., 12 (1945) A159–A164.

Google Scholar

[3] S. Suresh, Fatigue of Materials, Cambridge University Press, Cambridge, England (1998).

Google Scholar

[4] A. Palmgren, Die Lebensdauer von Kugellagern - The Fatigue Life of Ball-Bearings, VDI-Z 68 (1924) 339-341.

Google Scholar

[5] J. Schijve, Fatigue of Structures and Materials, Springer Science & Business Media, (2001).

Google Scholar

[6] H. F. S. G. Pereira, A. M. P. de Jesus, A. A. Fernandes, and A. S. Ribeiro, Analysis of fatigue damage under block loading in a low carbon steel, Strain 44 (6) (2008) 429–439.

DOI: 10.1111/j.1475-1305.2007.00389.x

Google Scholar

[7] L. Xi and Z. Songlin, Strengthening of transmission gear under low-amplitude loads, Mater. Sci. Eng. 488 (2008) 55–63.

DOI: 10.1016/j.msea.2007.10.045

Google Scholar

[8] L. Xi and Z. Songlin, Changes in mechanical properties of vehicle components after strengthening under low-amplitude loads below the fatigue limit, Fatig. Fract. Eng. Mater. Struct. 32 (2009) 847–855.

DOI: 10.1111/j.1460-2695.2009.01391.x

Google Scholar

[9] Zhou, J., Huang, H.Z., Barnhart, M.V., Huang, G. and Li, Y.F., A novel non-linear cumulative fatigue damage model based on the degradation of material memory, Int. J. Damage Mech. 29 (4) (2020) 610-625.

DOI: 10.1177/1056789519867747

Google Scholar

[10] Abuzaid W, Oral A, Sehitoglu H, Lambros J, Maier HJ., Fatigue crack initiation in Hastelloy X–the role of boundaries, Fatigue Fract. Eng. Mater. Struct. 36 (8) (2013) 809-26.

DOI: 10.1111/ffe.12048

Google Scholar

[11] McEvily AJ, Illg W., The rate of fatigue-crack propagation for two aluminium alloys under completely reversed loading, National Aeronautics and Space Administration Report NASA TN D-52 (1959).

Google Scholar

[12] McEvily Jr AJ, Boettner RG., On fatigue crack propagation in FCC metals, Acta Metall. 11 (7) (1963) 725-43.

DOI: 10.1016/0001-6160(63)90010-5

Google Scholar

[13] Neumann P., Coarse slip model of fatigue, Acta Metall. 17 (9) (1969) 1219-1225.

DOI: 10.1016/0001-6160(69)90099-6

Google Scholar

[14] Neumann P., The geometry of slip processes at a propagating fatigue crack—II, Acta Metall. 22 (9) (1974) 1167-78.

DOI: 10.1016/0001-6160(74)90072-8

Google Scholar

[15] Carroll JD, Abuzaid WZ, Lambros J, Sehitoglu H., On the interactions between strain accumulation, microstructure, and fatigue crack behavior, Int. J. Fract. 180 (2) (2013) 223-41.

DOI: 10.1007/s10704-013-9813-8

Google Scholar

[16] Miao J, Pollock TM, Jones JW., Microstructural extremes and the transition from fatigue crack initiation to small crack growth in a polycrystalline nickel-base superalloy, Acta Mater. 60 (6-7) (2012) 2840-54.

DOI: 10.1016/j.actamat.2012.01.049

Google Scholar

[17] Gross DW, Nygren K, Pataky GJ, Kacher J, Sehitoglu H, Robertson IM, The evolved microstructure ahead of an arrested fatigue crack in Haynes 230, Acta mater. 61 (15) (2013) 5768-78.

DOI: 10.1016/j.actamat.2013.06.020

Google Scholar

[18] Pilchak AL., Fatigue crack growth rates in alpha titanium: Faceted vs. striation growth, Scr. Mater 68 (5) (2013) 277-80.

DOI: 10.1016/j.scriptamat.2012.10.041

Google Scholar

[19] Herbig M, King A, Reischig P, Proudhon H, Lauridsen EM, Marrow J, Buffière JY, Ludwig W, 3-D growth of a short fatigue crack within a polycrystalline microstructure studied using combined diffraction and phase-contrast X-ray tomography, Acta Mater. 59 (2) (2011) 590-601.

DOI: 10.1016/j.actamat.2010.09.063

Google Scholar

[20] Williams JJ, Yazzie KE, Padilla E, Chawla N, Xiao X, De Carlo F., Understanding fatigue crack growth in aluminium alloys by in situ X-ray synchrotron tomography, Int. J. Fatigue 57 (2013) 79-85.

DOI: 10.1016/j.ijfatigue.2012.06.009

Google Scholar

[21] Man J, Valtr M, Petrenec M, Dluhoš J, Kuběna I, Obrtlik K, Polak J., AFM and SEM-FEG study on fundamental mechanisms leading to fatigue crack initiation, Int. J. Fatigue 76 (2015) 11-18.

DOI: 10.1016/j.ijfatigue.2014.09.019

Google Scholar

[22] Man J, Obrtlik K, Blochwitz C, Polak J., Atomic force microscopy of surface relief in individual grains of fatigued 316L austenitic stainless steel, Acta Mater. 50 (15) (2002) 3767-80.

DOI: 10.1016/s1359-6454(02)00167-2

Google Scholar

[23] Chowdhury P, Sehitoglu H., Mechanisms of fatigue crack growth–a critical digest of theoretical developments, Fatigue Fract. Eng. Mater. Struct. 39 (6) (2016) 652-74.

DOI: 10.1111/ffe.12392

Google Scholar

[24] Pineau A, McDowell DL, Busso EP, Antolovich SD., Failure of metals II: Fatigue, Acta Mater 107 (2016) 484-507.

DOI: 10.1016/j.actamat.2015.05.050

Google Scholar

[25] N. E. Dowling, C. A. Calhoun, and A. Arcari, Mean stress effects in stress-life fatigue and the Walker equation, Fatig. Fract. Eng. Mater. Struct. 32 (2009) 163–179.

DOI: 10.1111/j.1460-2695.2008.01322.x

Google Scholar

[26] S.J. Wang, M. W. Dixon, C. O. Huey, and S.C. Chen, The clemson limit stress diagram for ductile parts subjected to positive mean fatigue loading, J. Mech. Des. 122 (2000) 143–146.

DOI: 10.1115/1.533557

Google Scholar

[27] J. A. F. O. Correia, P. Raposo, M. Muniz-Calvente et al., A generalization of the fatigue Kohout-Věchet model for several fatigue damage parameters, Eng. Fract. Mech. 185 (2017) 284–300.

DOI: 10.1016/j.engfracmech.2017.06.009

Google Scholar

[28] Landgraf, R.W. ,The resistance of metals to cyclic deformation, In Achievement of high fatigue resistance in metals and alloys, ASTM International (1970) 3-36.

DOI: 10.1520/stp26837s

Google Scholar

[29] S. K. Koh and R. I. Stephens, Mean stress effects on low cycle fatigue for a high strength steel, Fatig. Fract. Eng. Mater. Struct. 14 (1991) 413–428.

DOI: 10.1016/0142-1123(91)90677-q

Google Scholar

[30] A. Ince and G. Glinka, A modification of Morrow and Smith-Watson-Topper mean stress correction models, F Fatig. Fract. Eng. Mater. Struct. 34 (2011) 854–867.

DOI: 10.1111/j.1460-2695.2011.01577.x

Google Scholar

[31] Lu S, Su Y, Yang M, Li Y., A modified walker model dealing with mean stress effect in fatigue life prediction for aeroengine disks, Math. Probl. Eng. (2018).

DOI: 10.1155/2018/5148278

Google Scholar

[32] P. Paris and F. Erdogan, A critical analysis of crack propagation laws, J. Basic Eng. 85 (1963) 528–533.

DOI: 10.1115/1.3656900

Google Scholar

[33] R. P. Skelton, T. Vilhelmsen and G. A. Webster, Energy criteria and cumulative damage during fatigue crack growth, Int. J. Fatigue 20 (1998) 641–649.

DOI: 10.1016/s0142-1123(98)00027-9

Google Scholar

[34] J. R. Rice, A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. App. Mechanics 35 (1968) 379–386.

DOI: 10.1115/1.3601206

Google Scholar

[35] N. Pugno, M. Ciavarella, P. Cornetti, and A. Carpinteri, A generalized Paris' law for fatigue crack growth, J. Mech. Phys. Solids 54 (7) (2006) 1333–1349.

DOI: 10.1016/j.jmps.2006.01.007

Google Scholar

[36] Jergéus, H.Ǻ., A simple formula for the stress intensity factors of cracks in side notches. Int. J. Fract. 14 (3) (1978), R113–R116.

DOI: 10.1007/bf00034697

Google Scholar

[37] Schijve, J., The stress intensity factor of small cracks at notches: Delft University of Technology, Department of Aerospace Engineering Report LR-330 (1981).

Google Scholar

[38] Tan, P.W., Raju, I.S., Shivakumar, K.N., Newman Jr., J.C., A re-evaluation of finite-element models and stress-intensity factors for surface cracks emanating from stress concentrations: NASA Technical Memorandum 101527, Hampton, (1988).

DOI: 10.1520/stp23425s

Google Scholar

[39] Zhao, W., Wu, X.R., Stress intensity factor evaluation by weight function for surface crack in edge notch. Theor. Appl. Fract. Mech. 13 (1990), 225–238.

DOI: 10.1016/0167-8442(90)90090-m

Google Scholar

[40] Shivakumar, K.N., Newman Jr., J.C., Stress intensity factors for large aspect ratio surface and corner cracks at a semi-circular notch in a tension specimen. Eng. Fract. Mech. 38 (1991) 467–473.

DOI: 10.1016/0013-7944(91)90096-j

Google Scholar

[41] Lin, X.B., Smith, R.A., Stress intensity factors for semi-elliptical surface cracks in semicircularly notched tension plates. J. Strain Anal. 32 (1997), 229–236.

DOI: 10.1243/0309324971513364

Google Scholar

[42] Newman Jr., J.C., Wu, X.R., Venneri, S.L., Li, C.G., Small-crack effects in high-strength aluminum alloys, NASA Reference Publication 1309, Hampton, (1994).

Google Scholar

[43] Wormsen, A., Fjeldstad, A., Härkegård, G., The application of asymptotic solutions to a semi-elliptical crack at the root of a notch. Eng. Fract. Mech. 73 (2006) 1899–(1912).

DOI: 10.1016/j.engfracmech.2006.02.006

Google Scholar

[44] Tan, P.W., Newman Jr., J.C., Bigelow, C.A., Three-dimensional finite-element analyses of corner cracks at stress concentrations. Eng. Fract. Mech. 55 (1996) 505–512.

DOI: 10.1016/0013-7944(94)00231-2

Google Scholar

[45] J. Goodman, Mechanics Applied to Engineering, Longmans, Green, London, UK, (1919).

Google Scholar

[46] J. Morrow, Fatigue properties of metals in Fatigue Design Handbook, Society of Automotive Engineers, Warrendale, Pa, USA, AE-4 (section 3.2) (1968) 21-29.

Google Scholar

[47] K. N. Smith, P. Watson, and T. H. Topper, Stress- strain function for the fatigue of metals, Journal of Materials 5 (1970) 767–778.

Google Scholar

[48] Walker, K, The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum, In Effects of environment and complex load history on fatigue life. ASTM International, (1970).

DOI: 10.1520/stp32032s

Google Scholar

[49] N. E. Dowling, Mean stress effects in stress-life and strain-life fatigue, No. 2004-01-2227 (2004) SAE Technical Paper.

DOI: 10.4271/2004-01-2227

Google Scholar

[50] Y. L. Lee, M. E. Barkey, and H. T. Kang, Metal fatigue analysis handbook: practical problem-solving techniques for computer-aided engineering, Elsevier (2011).

Google Scholar

[51] Toribio J, Matos JC, González B., Paris Law-Based Approach to Fatigue Crack Growth in Notched Plates under Tension Loading, Proc. Struct. Integr. 5 (2017) 1299-303.

DOI: 10.1016/j.prostr.2017.07.115

Google Scholar

[52] Akramin MR, Marizi MS, Husnain MN, Shaari MS, Analysis of Surface Crack using Various Crack Growth Models, J. Phy. 1529 (4) (2020) 042074.

DOI: 10.1088/1742-6596/1529/4/042074

Google Scholar

[53] N. E. Dowling, Mean stress effects in strain-life fatigue, Fatig. Fract. Eng. Mater. Struct. 32 (12) (2009) 1004–1019.

DOI: 10.1111/j.1460-2695.2009.01404.x

Google Scholar

[54] R. Burger and Y.-L. Lee, Assessment of the mean-stress sensitivity factor method in stress-life fatigue predictions, J. Test. Eval. 41 (2) (2013).

DOI: 10.1520/jte20120035

Google Scholar

[55] Z. Lv, H.-Z. Huang, H.-K. Wang, H. Gao, and F.-J. Zuo, Determining the Walker exponent and developing a modified Smith-Watson-Topper parameter model, J. Mech. Sci. Technol. 30 (3) (2016) 1129–1137.

DOI: 10.1007/s12206-016-0217-3

Google Scholar

[56] Kumbhar, S. V., and R. M. Tayade, A case study on effect of mean stress on fatigue life, Int. J. Eng. Dev. Res. 2 (1) (2014) 304-308.

Google Scholar

[57] Zheng XL, Xie X, Li XZ, Tang ZZ., Fatigue crack propagation characteristics of high‐tensile steel wires for bridge cables, Fatigue Fract. Eng. Mater. Struct. 42(1) (2019) 256-66.

DOI: 10.1111/ffe.12901

Google Scholar

[58] Forman, R. G., Study of fatigue crack initiation from flaws using fracture mechanics theory, Eng. Fract. Mech. 4(2) (1972) 333–34.

DOI: 10.1016/0013-7944(72)90048-3

Google Scholar

[59] Hartman, A. and J. Schijve, The Effects of Environment and Load Frequency on the Crack Propagation law for Macro Fatigue Crack Growth in Aluminum Alloys, Eng. Fract. Mech. 1(4) (1970) 615-631.

DOI: 10.1016/0013-7944(70)90003-2

Google Scholar

[60] Dowling, Norman E., Mechanical Behavior of Materials: Engineering Methods for Deformation Fracture and Fatigue, Prentice Hall, Englewood Cliffs, New Jersey, (1993).

DOI: 10.1016/s0142-1123(96)00087-4

Google Scholar

[61] Orringer O., Failure mechanics: damage evaluation of structural components, Fract. Mech. Methodol. (1984) 103-150.

Google Scholar

[62] Carlson RL, Kardomateas GA., Introduction to Fatigue in Metals and Composites, Springer Sci. Bus. Media (1995).

Google Scholar

[63] Collipriest, J.E. Jr., An experimentalist's view of the surface flaw problem- Physical problems and computational solutions, ASME (1972) 43-62.

Google Scholar

[64] Kumar A, MURTHY R, Iyer NR, A study of the stress ratio effects on fatigue crack growth using LOWESS regression, International Conference on Advances in Civil, Structural and Mechanical Engineering–CSM (2013) 47-51.

Google Scholar

[65] McEvily, A. J., Phenomenological and Microstructural Aspects of Fatigue. Presented at the Third International Conference on the Strength of Metals and Alloys, Cambridge, England; published by The Institute and The Iron and Steel Institutes, Publication, W36 (1974) 204-213.

Google Scholar

[66] Firdous I, Harmain GA, Masoodi JH., Design life prediction of structural components subjected to various fatigue loadings, Proc. Eng. 55 (2013) 616-24.

DOI: 10.1016/j.proeng.2013.03.304

Google Scholar

[67] Frost, N.E., L. P. Pook and K. Denton, A Fracture Mechanics Analysis of Fatigue Crack Growth Data for Various Materials, Eng. Fract. Mech., 3(2) (1971) 109-126.

DOI: 10.1016/0013-7944(71)90003-8

Google Scholar

[68] Rice, Richard C., Fatigue Design Handbook, Second Edition, Society of Automotive Engineers, PA (1988).

Google Scholar

[69] M. Kikukawa, M. Jono and M. Adachi, ASTM STP 675,23C247 (1979).

Google Scholar

[70] Zheng, Xiulin and A. Manfred, Fatigue Crack Propagation in Steels, Eng. Fract. Mech. 18(3) (1983) 965-973.

Google Scholar

[71] Wang, Wei and Cheng Thomas, Fatigue crack growth rate of metal by plastic energy damage accumulation theory, J. Eng. Mech. 120 (4) (1994) 776-795.

DOI: 10.1061/(asce)0733-9399(1994)120:4(776)

Google Scholar

[72] Miller MS, Gallagher JP, An analysis of several fatigue crack growth rate (FCGR) descriptions, In Fatigue crack growth measurement and data analysis ASTM International (1981).

DOI: 10.1520/stp33462s

Google Scholar

[73] Miller, K.J. and K. P. Zachariah, Cumulative damage laws for fatigue initiation and stage I propagation, J. Strain Anal. 12 (4) (1977) 262-270.

DOI: 10.1243/03093247v124262

Google Scholar

[74] Miller, K. J. and M. F. E. Ibrahim, Damage accumulation during initiation and short crack growth regimes, Fatigue. Eng. Mat. Struct. 4 (1981) 263-277.

DOI: 10.1111/j.1460-2695.1981.tb01124.x

Google Scholar

[75] Dowling NE, Begley JA. Fatigue crack growth during gross plasticity and the J-integral. In Mechanics of crack growth ASTM International (1976).

DOI: 10.1520/stp33940s

Google Scholar

[76] Mohanty, J., Fatigue Life Prediction Under Constant Amplitude and Interspersed Mode-I and Mixed-Mode (I and II) Overload using An Exponential Model, (2009).

Google Scholar

[77] Mateo A, Heredero F, Fargas G., Failure investigation of a centrifuge duplex stainless steel basket, Eng. Fail. Anal. 18 (8) (2011) 2165-78.

DOI: 10.1016/j.engfailanal.2011.07.008

Google Scholar

[78] Zhou X, Gaenser HP, Pippan R., The effect of single overloads in tension and compression on the fatigue crack propagation behaviour of short cracks, Int. J. Fatigue 89 (2016) 77-86.

DOI: 10.1016/j.ijfatigue.2016.02.001

Google Scholar

[79] Daneshpour S, Dyck J, Ventzke V, Huber N., Crack retardation mechanism due to overload in base material and laser welds of Al alloys, Int. J. Fatigue 42 (2012) 95-103.

DOI: 10.1016/j.ijfatigue.2011.07.010

Google Scholar

[80] Huang Y, Liu J, Huang X, Zhang J, Yue G., Delamination and fatigue crack growth behaviour in Fiber Metal Laminates (Glare) under single overloads, Int. J. Fatigue 78 (2015) 53-60.

DOI: 10.1016/j.ijfatigue.2015.04.002

Google Scholar

[81] Baptista JB, Antunes FV, Correia L, Branco R, A numerical study of the effect of single overloads on plasticity induced crack closure, Theor. Appl. Fract. Mech. 88 (2017) 51-63.

DOI: 10.1016/j.tafmec.2016.12.001

Google Scholar

[82] Antunes FV, Sousa T, Branco R, Correia L., Effect of crack closure on non-linear crack tip parameters, Int. J. Fatigue 71 (2015) 53-63.

DOI: 10.1016/j.ijfatigue.2014.10.001

Google Scholar

[83] Elber, W., Fatigue crack closure under cyclic tension, Eng. Fract. Mech. 2 (1970) 37-45.

Google Scholar

[84] Yang R., Prediction of crack growth under complex loading cycles, Int. J. Fatigue 16 (6) (1994) 397-402.

DOI: 10.1016/0142-1123(94)90452-9

Google Scholar

[85] Sunder R, Biakov A, Eremin A, Panin S., Synergy of crack closure, near-tip residual stress and crack-tip blunting in crack growth under periodic overloads–A fractographic study, Int. J. Fatigue 93 (2016) 18-29.

DOI: 10.1016/j.ijfatigue.2016.08.004

Google Scholar

[86] Steuwer A, Rahman M, Shterenlikht A, Fitzpatrick ME, Edwards L, Withers PJ., The evolution of crack-tip stresses during a fatigue overload event, Acta Mater. 58 (11) (2010) 4039-52.

DOI: 10.1016/j.actamat.2010.03.013

Google Scholar

[87] Lopez-Crespo P, Steuwer A, Buslaps T, Tai YH, Lopez-Moreno A, Yates JR, Withers PJ., Measuring overload effects during fatigue crack growth in bainitic steel by synchrotron X-ray diffraction, Int. J. Fatigue 71 (2015) 11-6.

DOI: 10.1016/j.ijfatigue.2014.03.015

Google Scholar

[88] Mehrzadi M, Taheri F., A material sensitive modified wheeler model for predicting the retardation in fatigue response of AM60B due to an overload, Int. J. Fatigue 55 (2013) 220-9.

DOI: 10.1016/j.ijfatigue.2013.06.022

Google Scholar

[89] Tvergaard V., Overload effects in fatigue crack growth by crack-tip blunting, Int. J. Fatigue 27 (10-12) (2005) 1389-97.

DOI: 10.1016/j.ijfatigue.2005.06.003

Google Scholar

[90] Makabe C, Purnowidodo A, McEvily AJ, Effects of surface deformation and crack closure on fatigue crack propagation after overloading and underloading, Int. J. Fatigue 26 (12) (2004) 1341-8.

DOI: 10.1016/j.ijfatigue.2004.03.017

Google Scholar

[91] Lee SY, Rogge RB, Choo H, Liaw PK., Neutron diffraction measurements of residual stresses around a crack tip developed under variable‐amplitude fatigue loadings, Fatigue Fract. Eng. Mater. Struct. 33 (12) (2010) 822-31.

DOI: 10.1111/j.1460-2695.2010.01490.x

Google Scholar

[92] Vasco-Olmo JM, Díaz FA, Patterson EA., Experimental evaluation of shielding effect on growing fatigue cracks under overloads using ESPI, Int. J. Fatigue 83 (2016) 117-26.

DOI: 10.1016/j.ijfatigue.2015.10.003

Google Scholar

[93] Wang DQ, Zhu ML, Xuan FZ., Crack tip strain evolution and crack closure during overload of a growing fatigue crack, Frattura Integr. Strutt. 11 (41) (2017) 143-8.

DOI: 10.3221/igf-esis.41.20

Google Scholar

[94] Belnoue JP, Jun TS, Hofmann F, Abbey B, Korsunsky AM., Evaluation of the overload effect on fatigue crack growth with the help of synchrotron XRD strain mapping, Eng. Fract. Mech. 77 (16) (2010) 3216-26.

DOI: 10.1016/j.engfracmech.2010.08.018

Google Scholar

[95] Lee SY, Choo H, Liaw PK, An K, Hubbard CR., A study on fatigue crack growth behaviour subjected to a single tensile overload: Part II. Transfer of stress concentration and its role in overload-induced transient crack growth, Acta mater. 59 (2) (2011) 495-502.

DOI: 10.1016/j.actamat.2010.09.048

Google Scholar

[96] Lee SY, Liaw PK, Choo H, Rogge RB., A study on fatigue crack growth behaviour subjected to a single tensile overload: Part I. An overload-induced transient crack growth micro mechanism, Acta Mater. 59 (2) (2011) 485-94.

DOI: 10.1016/j.actamat.2011.02.041

Google Scholar

[97] Zhang W, Jiang W, Li H, Song M, Yu Y, Sun G, Li J, Huang Y, Effect of tensile overload on fatigue crack behavior of 2205 duplex stainless steel: Experiment and finite element simulation, Int. J. Fatigue 128 (2019) 105199.

DOI: 10.1016/j.ijfatigue.2019.105199

Google Scholar

[98] RICARDO, LUIZ CH, and CARLOS AJ MIRANDA., Crack simulation models in variable amplitude loading-a review, Frattura ed Integr. Strutt. (2016).

DOI: 10.3221/igf-esis.35.52

Google Scholar

[99] Wheeler, O. E., Spectrum Loading and Crack Growth, J. Basic Eng. 94 (1972) 181-186.

Google Scholar

[100] Murthy AR, Palani GS, Iyer NR., An improved wheeler residual stress model for remaining life assessment of cracked plate panels, Comput. Mater. Contin. 4 (2004) 289-300.

Google Scholar

[101] Broek, D., The Practical Use of Fracture Mechanics, Kluwer Ac. Publ (1988).

Google Scholar

[102] Sippel, K. O., and D. Weisgerber., Flight-by-flight crack propagation test results with several load spectra and comparison with calculation according to different models, (1977).

Google Scholar

[103] Finney, M., Sensitivity of fatigue crack growth prediction (using Wheeler retardation) to data representation, J Test. Eval. 17 (1984) 74-81.

DOI: 10.1520/jte11092j

Google Scholar

[104] Kirmani, Ghulam Ashraf-Ul-Harmain, Single overload fatigue crack growth retardation: an implementation of plasticity induced closure, PhD diss., (1997).

Google Scholar

[105] Correia, José, Hermes Carvalho, Grzegorz Lesiuk, António Mourão, Lucas Grilo, Abílio de Jesus, and Rui Calçada, Fatigue crack growth modelling of fão bridge puddle iron under variable amplitude loading, Int. J. Fatigue (2020) 105588.

DOI: 10.1016/j.ijfatigue.2020.105588

Google Scholar

[106] Lu YC, Yang FP, Chen T., Effect of single overload on fatigue crack growth in QSTE340TM steel and retardation model modification, Eng. Fract. Mech. 212 (2019) 81-94.

DOI: 10.1016/j.engfracmech.2019.03.029

Google Scholar

[107] Rama Chandra Murthy, A., Palani, G. S., Nagesh, R. Iyer, Studies on Remaining Life Prediction under Variable Amplitude Loading, SERC Report CSDMLP91-RR-04 (2003).

Google Scholar

[108] Sheu BC, Song PS, Hwang S. Shaping exponent in wheeler model under a single overload. Eng. fract. mech. 1 (1995) 135-43.

DOI: 10.1016/0013-7944(94)00250-l

Google Scholar

[109] Dawicke DS. Overload and underload effects on the fatigue crack growth behavior of the 2024-T3 aluminum alloy.

Google Scholar

[110] Harmain GA., An investigation on single overload fatigue crack growth retardation, Part-1 (Plasticity zone interactions), J. Metall. Mater. Sci. 47(3) (2005) 129-40.

Google Scholar

[111] Chang, J.B and Hudson, C.M. ed., Methods and Models for Predicting Fatigue Crack Growth Under Random Loading, ASTM STP 748 ASTM (1981).

DOI: 10.1520/stp748-eb

Google Scholar

[112] Newman, Jr., J. C., A Crack Opening Stress Equation for Fatigue Crack Growth, Int. J. Fract. 24 (3) (1984) R131-R135.

DOI: 10.1007/bf00020751

Google Scholar

[113] Yuen BKC,Taheri, Proposed modifications to the Wheeler retardation model for multiple overloading fatigue life prediction, Int J Fatig. 28 (2006) 1803-19.

DOI: 10.1016/j.ijfatigue.2005.12.007

Google Scholar

[114] Jiang, Yanyao, and Miaolin Feng., Modeling of fatigue crack propagation, J. Eng. Mater. Technol. 126 (1) (2004) 77-86.

Google Scholar

[115] Zhao T,zhang J,Jiang Y., A study of fatigue crack growth of 7075T651 aluminum alloy, Int. J. Fatig. 30 (2008) 1169-81.

Google Scholar

[116] Kalnaus S, Fan F, Vasudevan AK, Jiang Y, An Experimental Investigation on crack growth behavior of AL6XN stainless steel, Eng. Fract. Mech. 75 (2008) 2002-19.

DOI: 10.1016/j.engfracmech.2007.11.002

Google Scholar

[117] Wang X, Gao Z, Zhao T, Ding F, Jiang Y, An experimental investigation of the fatigue crack growth behavior of a pressure vessel material, In ASME Pressure Vessels and Piping Conference 47578 (2006) 65-71.

DOI: 10.1115/pvp2006-icpvt-11-93471

Google Scholar

[118] Kalnaus, S., Fan, F., Jiang, Y. and Vasudevan, A.K., An experimental investigation of fatigue crack growth of stainless steel 304L, Int. J. Fatig. 31(5) (2009) 840-849.

DOI: 10.1016/j.ijfatigue.2008.11.004

Google Scholar

[119] Willenborg, James, R. M. Engle, and H. A. Wood, A crack growth retardation model using an effective stress concept, No. AFFDL-TM-71-1-FBR, Air Force Flight Dynamics Lab Wright-Patterson Afb Oh, (1971).

DOI: 10.21236/ada956517

Google Scholar

[120] Broek D., Elementary engineering fracture mechanics, Kluwer (1982).

Google Scholar

[121] Gallagher JP. A generalized development of yield zone models. AIR FORCE FLIGHT DYNAMICS LAB WRIGHT-PATTERSON AFB OH; (1974).

Google Scholar

[122] Sander M, Richard HA., Fatigue crack growth under variable amplitude loading Part II: analytical and numerical investigations, Fatigue Fract. Eng. Mater. Struct. 29 (4) (2006) 303-19.

DOI: 10.1111/j.1460-2695.2006.00993.x

Google Scholar

[123] Chung-Youb K, Ji-Ho S., Fatigue crack closure and growth behaviour under random loading, Eng. Fract. Mech. 49 (1) (1994) 105-20.

DOI: 10.1016/0013-7944(94)90115-5

Google Scholar

[124] Dominguez J, Zapatero J, Moreno B., A statistical model for fatigue crack growth under random loads including retardation effects, Eng. Fract. Mech. 62 (4-5) (1999) 351-69.

DOI: 10.1016/s0013-7944(98)00106-4

Google Scholar

[125] Jono M, Sugeta A, Uematsu Y., Fatigue crack growth and crack closure behaviour of Ti-6Al-4V alloy under variable-amplitude loadings, Advances in Fatigue Crack Closure Measurement and Analysis ASTM Int. 2 (1999).

DOI: 10.1520/stp15762s

Google Scholar

[126] Lee CF., EndoFEM intergrated methodology of fatigue crack propagation with overloaded delay retardation, J. Mech. 19 (2) (2003) 327-35.

DOI: 10.1017/s1727719100004366

Google Scholar

[127] Ljustell P, Nilsson F., Variable amplitude crack growth in notched specimens, Eng. Fract. Mech. 72 (18) (2005) 2703-20.

DOI: 10.1016/j.engfracmech.2005.07.001

Google Scholar

[128] Padmadinata UH., Investigation of crack-closure prediction models for fatigue in aluminium sheet under flight-simulation loading, Doctor Thesis, Delft Un. of Tech. (1990).

DOI: 10.1016/0142-1123(91)90090-l

Google Scholar

[129] Aliaga D, Davy A, Schaff H., Mechanics of fatigue crack closure, Newman JC Jr., editor. (1987) 491-504.

DOI: 10.1520/stp27227s

Google Scholar

[130] De Koning AU., A simple crack closure model for prediction of fatigue crack growth rates under variable-amplitude loading, Fract. Mech. ASTM International (1981).

DOI: 10.1520/stp28791s

Google Scholar

[131] Krscanski, Sanjin, and Josip Brnic., Prediction of Fatigue Crack Growth in Metallic Specimens under Constant Amplitude Loading Using Virtual Crack Closure and Forman Model, Metals 10, 7 (2020) 977.

DOI: 10.3390/met10070977

Google Scholar

[132] Sadananda K, Vasudevan AK, Holtz RL, Lee EU., Analysis of overload effects and related phenomena, Int. J. Fatigue 21 (1999) S233-46.

Google Scholar

[133] Elber W, The significance of fatigue crack closure, In Damage tolerance in aircraft structures, ASTM International (1971) 230-242.

DOI: 10.1520/stp26680s

Google Scholar

[134] Newman, J. C., A crack-closure model for predicting fatigue crack growth under aircraft spectrum loading, ASTM STP 748 (1981) 53-84.

DOI: 10.1520/stp28334s

Google Scholar

[135] Newman, J. C., Prediction of fatigue crack growth under variable-amplitude and spectrum loading using a closure model, In Design of Fatigue and Fracture Resistant Structures ASTM International (1982).

DOI: 10.1520/stp28863s

Google Scholar

[136] Dill, HD and CR Saff, Spectrum crack growth prediction method based on crack surface displacement and contact analyses, In Fatigue crack growth under spectrum loads ASTM International (1976) 306-319.

DOI: 10.1520/stp33381s

Google Scholar

[137] Dill, H. D., Charles R. Saff, and J. M. Potter, Effects of fighter attack spectrum on crack growth, In Effect of Load Spectrum Variables on Fatigue Crack Initiation and Propagation ASTM International (1980) 205-217.

DOI: 10.1520/stp27490s

Google Scholar

[138] Fuhring, H. and T. Seeger, Dugdale crack closure analysis of fatigue cracks under constant amplitude loading, Eng. Fract. Mech. 11 (1979) 99-l 22.

DOI: 10.1016/0013-7944(79)90033-x

Google Scholar

[139] Garrett GG, Knott JK, On the effect of crack closure on the rate of fatigue crack propagation, Int. J. Fract. 13 (1) (1977) 101-104.

DOI: 10.1007/bf00040882

Google Scholar

[140] NASGRO® Consortium. Fatigue crack growth computer program NASGRO® version 3.0. user manual, JSC-22267B. NASA Technical report. (2001).

Google Scholar

[141] R. Forman, V. Shivakumar, J. Cardinal, L. Williams and P. McKeighan, Fatigue crack growth database for damage tolerance analysis, US Department of Transportation Federal Aviation Administration (FAA), Office of Aviation Research, DOT/FAA/AR-05/15 USA (2005).

Google Scholar

[142] Dirik, Haydar, and Tuncay Yalçinkaya., Fatigue crack growth under variable amplitude loading through XFEM,  Proced. Structural Integrity 2 (2016) 3073-3080.

DOI: 10.1016/j.prostr.2016.06.384

Google Scholar

[143] ASTM E647-15e1, Standard test method for measurement of fatigue crack growth rates, ASTM International West Conshohocken PA (2015).

Google Scholar

[144] Zhang W, Wang Q, Li X, He J. A simple fatigue life prediction algorithm using the modified NASGRO equation. Math. Probl. Eng. (2016).

Google Scholar

[145] J. C. Newman Jr., E. P. Phillips, and M. H. Swain, Fatigue life prediction methodology using small-crack theory, Int. J. Fatigue 21 (2) (1999) 109–119.

DOI: 10.1016/s0142-1123(98)00058-9

Google Scholar

[146] J. C. Newman Jr., Fatigue-life prediction methodology using a crack-closure model, J. Eng. Mater. Tech. 117 (4) (1995) 433–439.

DOI: 10.1115/1.2804736

Google Scholar

[147] J. C. Newman Jr., E. L. Anagnostou, and D. Rusk, Fatigue and crack-growth analyses on 7075 T651 aluminum alloy coupons under constant- and variable-amplitude loading, Int. J. Fatigue 62 (2014) 133–143.

DOI: 10.1016/j.ijfatigue.2013.04.020

Google Scholar

[148] Forman RG, Mettu SR. Behavior of surface and corner cracks subjected to tensile and bending loads in a Ti-6Al-4V alloy, (1992).

Google Scholar

[149] Maierhofer J, Pippan R, Gänser HP, Modified NASGRO equation for short cracks and application to the fitness-for-purpose assessment of surface-treated components, Procedia materials science (2014) 930-5.

DOI: 10.1016/j.mspro.2014.06.151

Google Scholar

[150] Kujawski, Daniel, A fatigue crack driving force parameter with load ratio effects, Int. J. Fatigue 23 (2001) 239-246.

DOI: 10.1016/s0142-1123(01)00158-x

Google Scholar

[151] James MN, Some unresolved issues with fatigue crack closure–measurement, mechanism and interpretation problems, In Ninth Int. Conf. on Fracture (1997) 2403-2414.

Google Scholar

[152] Kujawski D, A new (ΔK+ Kmax) 0.5 driving force parameter for crack growth in aluminum alloys, Int. J. Fatigue. 23 (8) (2001) 733-40.

DOI: 10.1016/s0142-1123(01)00023-8

Google Scholar

[153] Smith KN, Watson P, Topper TH, A stress–strain function for the fatigue of metals, J. Mater. ASTM 5(4) (1970) 767–78.

Google Scholar

[154] Zheng J, Powell BE, Effect of stress ratio and test methods on fatigue crack growth rate for nickel based superalloy udimet720, Int. J. Fatigue. 21 (1999) 507–513.

DOI: 10.1016/s0142-1123(99)00009-2

Google Scholar

[155] Newman Jr JC, Wu XR, Venneri SL, Li CG. Small-crack effects in high-strength aluminum alloys (1994).

Google Scholar

[156] Barsom, J. M., Fatigue crack growth under variable amplitude loading in various bridge steels, In Fatigue Crack Growth under Spectrum Loads, ASTM STP 595, American Society for Testing and Materials PA (1976) 217-235.

DOI: 10.1520/stp33374s

Google Scholar

[157] McEvily, A. J., Phenomenological and Microstructural Aspects of Fatigue, In Third International Conference on the Strength of Metals and Alloys, Institute and The Iron and Steel Institutes W36 (1974) 204-213.

Google Scholar

[158] Hudson, C. M., A root-mean-square approach for predicting fatigue crack growth under random loading, In Methods and models for predicting fatigue crack growth under random loading ASTM International 1981 41-52.

DOI: 10.1520/stp28333s

Google Scholar

[159] Huang, X., Torgeir, M. and Cui, W, An engineering model of fatigue crack growth under variable amplitude loading, Int. J. Fat. 30 (1) (2008) 2-10.

DOI: 10.1016/j.ijfatigue.2007.03.004

Google Scholar

[160] Aeran A, Siriwardane SC, Mikkelsen O, Langen I., A new nonlinear fatigue damage model based only on SN curve parameters, Int. J. Fatigue 103 (2017) 327-41.

DOI: 10.1016/j.ijfatigue.2017.06.017

Google Scholar

[161] Zhang X, Gao H, Huang HZ, Li YF, Mi J., Dynamic reliability modelling for system analysis under complex load, Reliab. Eng. Syst. Saf. 180 (2018) 345-51.

Google Scholar

[162] Huang HZ, Huang CG, Peng Z, Li YF, Yin H., Fatigue life prediction of fan blade using nominal stress method and cumulative fatigue damage theory, Int. J.Turbo & Jet-Eng. 1 (2017).

DOI: 10.1515/tjj-2017-0015

Google Scholar

[163] Huang J, Meng Q, Zhan Z, Hu W, Shen F., Damage mechanics-based approach to studying effects of overload on fatigue life of notched specimens, Int. J. Damage Mech. 28 (4) (2019) 538-565.

DOI: 10.1177/1056789518775173

Google Scholar

[164] Liu MD, Xiong JJ, Wang CQ., A modified accumulation damage algorithm for predicting corrosion fatigue life by considering load interaction for aluminium alloys, Int. J. Damage Mech. 28 (2) (2019) 270-290.

DOI: 10.1177/1056789518763707

Google Scholar

[165] Sun Y, Voyiadjis GZ, Hu W, Shen F, Meng Q., Fatigue and fretting fatigue life prediction of double-lap bolted joints using continuum damage mechanics-based approach, Int. J. Damage Mech. 26 (1) (2017) 162-88.

DOI: 10.1177/1056789516641481

Google Scholar

[166] Wang WZ, Liu YZ., Continuum damage mechanics-based analysis of creep–fatigue interaction behaviour in a turbine rotor, Int. J. Damage Mech. 28 (3) (2019) 455-77.

DOI: 10.1177/1056789518775174

Google Scholar

[167] Lv Z, Huang HZ, Zhu SP, Gao H, Zuo F., A modified nonlinear fatigue damage accumulation model, Int. J. Damage Mech. 24 (2) (2015) 168-181.

DOI: 10.1177/1056789514524075

Google Scholar

[168] Bahloul, A., C. H. Bouraoui, and T. Boukharouba., Prediction of fatigue life by crack growth analysis, Int. J. Adv. Manuf. Tech. 9-12 (2017) 4009-4017.

DOI: 10.1007/s00170-017-0069-8

Google Scholar

[169] Salvati, Enrico, Hongjia Zhang, Kai Soon Fong, Xu Song, and Alexander M. Korsunsky., Separating plasticity-induced closure and residual stress contributions to fatigue crack retardation following an overload, J. Mech. Phys. Solids 98 (2017) 222-235.

DOI: 10.1016/j.jmps.2016.10.001

Google Scholar

[170] Blasón, S., J. A. F. O. Correia, N. Apetre, A. Arcari, A. M. P. De Jesus, P. M. G. P. Moreira, and A. Fernández-Canteli, Proposal of a fatigue crack propagation model taking into account crack closure effects using a modified CCS crack growth model, Proce. Struct. Integr. 1 (2016) 110-117.

DOI: 10.1016/j.prostr.2016.02.016

Google Scholar

[171] Castillo, Enrique, Alfonso Fernández-Canteli, and Dieter Siegele, Obtaining S–N curves from crack growth curves: an alternative to self-similarity, Int. J. Fract. 187 (2014) 159-172.

DOI: 10.1007/s10704-014-9928-6

Google Scholar

[172] Zapatero, J., B. Moreno, and A. González-Herrera, Fatigue crack closure determination by means of finite element analysis, Eng. Fract. Mech. 75 (2008) 41-57.

DOI: 10.1016/j.engfracmech.2007.02.020

Google Scholar

[173] García-Collado, A., J. M. Vasco-Olmo, and F. A. Díaz, Numerical analysis of plasticity induced crack closure based on an irreversible cohesive zone model, Theor. Appl. Fract. Mech. 89 (2017) 52-62.1.

DOI: 10.1016/j.tafmec.2017.01.006

Google Scholar

[174] Kumar, Ajay, Anupam Chakrabarti, Pradeep Bhargava, and Vipul Prakash, Efficient failure analysis of laminated composites and sandwich cylindrical shells based on higher-order zigzag theory, J. Aerosp. Eng. 28 (4) (2015) 04014100.

DOI: 10.1061/(asce)as.1943-5525.0000433

Google Scholar

[175] Kumar, Ajay, Anupam Chakrabarti, Pradeep Bhargava, and Rajib Chowdhury, Probabilistic failure analysis of laminated sandwich shells based on higher order zigzag theory, J. Sandw. Struct. Mater. 17 (5) (2015) 546-561.

DOI: 10.1177/1099636215577368

Google Scholar

[176] Kumar, Ajay, Ultimate strength analysis of laminated composite sandwich plates, In Structures Elsevier 14 (2018) 95-110.

DOI: 10.1016/j.istruc.2018.02.004

Google Scholar

[177] Kumar, Ajay, and Anupam Chakrabarti, Failure mode analysis of laminated composite sandwich plate, Eng. Fail. Anal. 104 (2019) 950-976.

DOI: 10.1016/j.engfailanal.2019.06.080

Google Scholar