[1]
Y. Dahman, K. Syed, S. Begum, P. Roy, B. Mohtasebi, Biofuels: Their characteristics and analysis, in: D. Verma, E. Fortunati, S. Jain, X. Zhang (Eds.), Biomass, Biopolym. Mater. Bioenergy, Woodhead Publishing, Cambridge, 2019: p.277–325.
DOI: 10.1016/b978-0-08-102426-3.00014-x
Google Scholar
[2]
Y. Huang, L. Wei, X. Zhao, S. Cheng, J. Julson, Y. Cao, Z. Gu, Upgrading pine sawdust pyrolysis oil to green biofuels by HDO over zinc-assisted Pd/C catalyst, Energy Convers. Manag. 115 (2016) 8–16.
DOI: 10.1016/j.enconman.2016.02.049
Google Scholar
[3]
C. González, P. Marín, F. V. Díez, S. Ordóñez, Gas-Phase Hydrodeoxygenation of Benzaldehyde, Benzyl Alcohol, Phenyl Acetate, and Anisole over Precious Metal Catalysts, Ind. Eng. Chem. Res. (2016).
DOI: 10.1021/acs.iecr.6b00036
Google Scholar
[4]
S. Czernik, A. V. Bridgwater, Overview of Applications of Biomass Fast Pyrolysis Oil, Energy & Fuels. 18 (2004) 590–598.
DOI: 10.1021/ef034067u
Google Scholar
[5]
Q. Zhang, J. Chang, T. Wang, Y. Xu, Review of biomass pyrolysis oil properties and upgrading research, Energy Convers. Manag. 48 (2007) 87–92.
DOI: 10.1016/j.enconman.2006.05.010
Google Scholar
[6]
A. Imran, E.A. Bramer, K. Seshan, G. Brem, High quality bio-oil from catalytic flash pyrolysis of lignocellulosic biomass over alumina-supported sodium carbonate, Fuel Process. Technol. 127 (2014) 72–79.
DOI: 10.1016/j.fuproc.2014.06.011
Google Scholar
[7]
M. Li, X. Wang, N. Perret, M.A. Keane, Enhanced production of benzyl alcohol in the gas phase continuous hydrogenation of benzaldehyde over Au / Al 2 O 3 ( A ), CATCOM. 46 (2014) 187–191.
DOI: 10.1016/j.catcom.2013.12.024
Google Scholar
[8]
X. Kong, L. Chen, Hydrogenation of aromatic aldehydes to aromatic hydrocarbons over Cu-HZSM-5 catalyst, CATCOM. 57 (2014) 45–49.
DOI: 10.1016/j.catcom.2014.07.038
Google Scholar
[9]
A.M.H. Rasmussen, B. Hammer, Adsorption , mobility , and dimerization of benzaldehyde on Pt ( 111 ), 174706 (2012) 1–10.
DOI: 10.1063/1.4707952
Google Scholar
[10]
D. Shi, J.M. Vohs, Lignin-derived oxygenate reforming on a bimetallic surface: The reaction of benzaldehyde on Zn/Pt(111), Surf. Sci. (2016).
DOI: 10.1016/j.susc.2015.10.015
Google Scholar
[11]
J. Zhang, B. Fidalgo, A. Kolios, D. Shen, S. Gu, Mechanism of deoxygenation in anisole decomposition over single-metal loaded HZSM-5: Experimental study, Chem. Eng. J. 336 (2018) 211–222.
DOI: 10.1016/j.cej.2017.11.128
Google Scholar
[12]
J. Zhang, B. Fidalgo, S. Wagland, D. Shen, X. Zhang, S. Gu, Deoxygenation in anisole decomposition over bimetallic catalysts supported on HZSM-5, Fuel. 238 (2019) 257–266.
DOI: 10.1016/j.fuel.2018.10.129
Google Scholar
[13]
X. Zhu, L.L. Lobban, R.G. Mallinson, D.E. Resasco, Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt / HBeta catalyst, J. Catal. 281 (2011) 21–29.
DOI: 10.1016/j.jcat.2011.03.030
Google Scholar
[14]
X. Zhu, R.G. Mallinson, D.E. Resasco, Role of transalkylation reactions in the conversion of anisole over HZSM-5, Appl. Catal. A Gen. 379 (2010) 172–181.
DOI: 10.1016/j.apcata.2010.03.018
Google Scholar
[15]
K.A. Rogers, Y. Zheng, Selective Deoxygenation of Biomass-Derived Bio-oils within Hydrogen-Modest Environments: A Review and New Insights, ChemSusChem. 9 (2016) 1750–1772.
DOI: 10.1002/cssc.201600144
Google Scholar
[16]
M. Asadieraghi, W.M.A. Wan Daud, H.F. Abbas, Model compound approach to design process and select catalysts for in-situ bio-oil upgrading, Renew. Sustain. Energy Rev. 36 (2014) 286–303.
DOI: 10.1016/j.rser.2014.04.050
Google Scholar
[17]
A.A. Philippov, A.M. Chibiryaev, O.N. Martyanov, Raney® nickel-catalyzed hydrodeoxygenation and dearomatization under transfer hydrogenation conditions—Reaction pathways of non-phenolic compounds, Catal. Today. (2019) 0–1.
DOI: 10.1016/j.cattod.2019.05.033
Google Scholar
[18]
J. wei Zhang, K. kang Sun, D. dan Li, T. Deng, G. ping Lu, C. Cai, Pd-Ni bimetallic nanoparticles supported on active carbon as an efficient catalyst for hydrodeoxygenation of aldehydes, Appl. Catal. A Gen. 569 (2019) 190–195.
DOI: 10.1016/j.apcata.2018.10.038
Google Scholar
[19]
A. Ausavasukhi, T. Sooknoi, D.E. Resasco, Catalytic deoxygenation of benzaldehyde over gallium-modified ZSM-5 zeolite, J. Catal. 268 (2009) 68–78.
DOI: 10.1016/j.jcat.2009.09.002
Google Scholar
[20]
D. Almeida, M.D.F. Marques, Thermal and catalytic pyrolysis of plastic waste, 26 (2016) 44–51.
Google Scholar
[21]
E.N. Vlasova, G.A. Bukhtiyarova, I. V. Deliy, P. V. Aleksandrov, A.A. Porsin, M.A. Panafidin, E.Y. Gerasimov, V.I. Bukhtiyarov, The effect of rapeseed oil and carbon monoxide on SRGO hydrotreating over sulfide CoMo/Al2O3 and NiMo/Al2O3 catalysts, Catal. Today. (2019).
DOI: 10.1016/j.cattod.2019.06.011
Google Scholar
[22]
K. Li, R. Wang, J. Chen, Hydrodeoxygenation of Anisole over Silica-Supported Ni 2 P , MoP , and NiMoP Catalysts, (2011) 854–863.
DOI: 10.1021/ef101258j
Google Scholar
[23]
T. Viljava, R.S. Komulainen, A.O.I. Krause, Effect of H 2 S on the stability of CoMo / Al 2 O 3 catalysts during hydrodeoxygenation, 60 (2000) 83–92.
DOI: 10.1016/s0920-5861(00)00320-5
Google Scholar
[24]
V.O.O. Goncalves, S. Brunet, F. Richard, Hydrodeoxygenation of Cresols Over Mo/Al2O3 and CoMo/Al2O3 Sulfided Catalysts, Catal. Letters. 146 (2016) 1562–1573.
DOI: 10.1007/s10562-016-1787-5
Google Scholar
[25]
Y. Romero, F. Richard, S. Brunet, Hydrodeoxygenation of 2-ethylphenol as a model compound of bio-crude over sulfided Mo-based catalysts: Promoting effect and reaction mechanism, Appl. Catal. B Environ. 98 (2010) 213–223.
DOI: 10.1016/j.apcatb.2010.05.031
Google Scholar
[26]
N. Rahimi, R. Karimzadeh, Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: A review, Appl. Catal. A Gen. 398 (2011) 1–17.
DOI: 10.1016/j.apcata.2011.03.009
Google Scholar
[27]
M. Moshoeshoe, M. Silas Nadiye-Tabbiruka, V. Obuseng, A Review of the Chemistry, Structure, Properties and Applications of Zeolites, Am. J. Mater. Sci. 2017 (2017) 196–221.
Google Scholar
[28]
K. Lazdovica, L. Liepina, V. Kampars, Catalytic pyrolysis of wheat bran for hydrocarbons production in the presence of zeolites and noble-metals by using TGA-FTIR method, Bioresour. Technol. 207 (2016) 126–133. https://doi.org/10.1016/j.biortech.2016.01.117.
DOI: 10.1016/j.biortech.2016.01.117
Google Scholar
[29]
D.Y. Hong, S.J. Miller, P.K. Agrawal, C.W. Jones, Hydrodeoxygenation and coupling of aqueous phenolics over bifunctional zeolite-supported metal catalysts, Chem. Commun. 46 (2010) 1038–1040.
DOI: 10.1039/b918209h
Google Scholar
[30]
A.M. Robinson, L. Mark, M.J. Rasmussen, J.E. Hensley, J.W. Medlin, Surface Chemistry of Aromatic Reactants on Pt- and Mo-Modi fi ed Pt Catalysts, (2016).
DOI: 10.1021/acs.jpcc.6b08415
Google Scholar
[31]
K.D. Nugrahaningtyas, W. Trisunaryanti, T. Triyono, N. Nuryono, D.M. Widjonarko, A. Yusnani, M. Mulyani, Preparation and Characterization The Non-Sulfided Metal Catalyst: Ni/USY and NiMo/USY, Indones. J. Chem. 9 (2010) 177–183.
DOI: 10.22146/ijc.21526
Google Scholar
[32]
Z. He, X. Wang, Hydrodeoxygenation of model compounds and catalytic systems for pyrolysis bio-oils upgrading, Catal. Sustain. Energy. 1 (2013) 28–52.
DOI: 10.2478/cse-2012-0004
Google Scholar
[33]
D.P. Gamliel, S. Karakalos, J.A. Valla, Liquid phase hydrodeoxygenation of anisole, 4-ethylphenol and benzofuran using Ni, Ru and Pd supported on USY zeolite, Appl. Catal. A Gen. 559 (2018) 20–29.
DOI: 10.1016/j.apcata.2018.04.004
Google Scholar
[34]
D.P. Gamliel, B.P. Baillie, E. Augustine, J. Hall, G.M. Bollas, J.A. Valla, Nickel impregnated mesoporous USY zeolites for hydrodeoxygenation of anisole, Microporous Mesoporous Mater. 261 (2018) 18–28.
DOI: 10.1016/j.micromeso.2017.10.027
Google Scholar
[35]
S. Kadarwati, E.B. Susatyo, D. Ekowati, Aktivitas Katalis Cr / Zeolit Alam pada Reaksi Konversi Minyak Jelantah Menjadi Bahan Bakar, J. Sains Dan Teknol. 8 (2010) 9–16.
DOI: 10.31258/jnat.14.3.219-226
Google Scholar
[36]
D. Ariyani, K.D. Nugrahaningtyas, E. Heraldy, The Variation of Catalyst and Carrier Gas on Anisole Deoxygenation Reaction, IOP Conf. Ser. Mater. Sci. Eng. 333 (2018).
DOI: 10.1088/1757-899x/333/1/012058
Google Scholar
[37]
S.A. El-Hakam, S.E. Samra, S.M. El-Dafrawy, A.A. Ibrahim, R.S. Salama, Surface Acidity and Catalytic Activity of Sulfated Titania Supported on Mesoporous MCM-41, Int. J. Mod. Chem. 5 (2013) 55–70.
Google Scholar
[38]
M.A. Gonalez-Borja, D.E. Resasco, Anisole and Guaiacol Hydrodeoxygenation over Monolithic Pt-Sn Catalysts, Energy and Fuels. 25 (2011) 4155–4162.
DOI: 10.1021/ef200728r
Google Scholar
[39]
M. Ferrari, B. Delmon, P. Grange, Influence of the impregnation order of molybdenum and cobalt in carbon-supported catalysts for hydrodeoxygenation reactions, Carbon N. Y. 40 (2002) 497–511.
DOI: 10.1016/s0008-6223(01)00128-2
Google Scholar
[40]
R.M. Mironenko, O.B. Belskaya, T.I. Gulyaeva, M. V Trenikhin, A.I. Nizovskii, A. V Kalinkin, V.I. Bukhtiyarov, A. V Lavrenov, V.A. Likholobov, Synergistic effect between supported metals, Catal. Today. (2016).
DOI: 10.1016/j.cattod.2016.07.022
Google Scholar
[41]
C. Keresszegi, D. Ferri, T. Mallat, A. Baiker, On the role of CO formation during the aerobic oxidation of alcohols on Pd / Al 2 O 3 : an in situ attenuated total reflection infrared study, 234 (2005) 64–75.
DOI: 10.1016/j.jcat.2005.05.019
Google Scholar
[42]
K.M.A. Santos, E.M. Albuquerque, L.E.P. Borges, M.A. Fraga, Cannizzaro reaction to lactic acid over solid catalysts, Mol. Catal. (2017).
Google Scholar