The Influence of Zinc Ions in Insulin Fibrillation by Heat at Acid Solution Revealed Using Small Angle X-Ray Scattering

Article Preview

Abstract:

The fibrillation mechanism of insulin in acid solution has been studied by small angle X-ray scattering (SAXS). It was observed that insulin monomer unfolded in both conditions. Furthermore, in zinc free solution, insulin tend to aggregate on heating start in the first 5 min. The fibrillation through aggregation process continues until 30 min on heating. The similar phenomenon occurs in the presence of zinc ions. The SAXS data suggest that the presence of zinc ions prevent the long cylindrical fibril at the beginning of heating. However, after 20 min heating, the large cylindrical fibril of insulin formed in both conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

327-334

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Morinaga, K. Hasegawa, R. Nomura, T. Ookoshi, D. Ozawa, Y. Goto, M. Yamada, H. Naiki, Critical role of interfaces and agitation on the nucleation of Aβ amyloid fibrils at low concentrations of Aβ monomers, Biochim. Biophys. Acta - Proteins Proteomics, 1804 (2010) 986–995.

DOI: 10.1016/j.bbapap.2010.01.012

Google Scholar

[2] K. Březina, E. Duboué-Dijon, V. Palivec, J. Jiráček, T. Křížek, C.M. Viola, T.R. Ganderton, A.M. Brzozowski, P. Jungwirth, Can Arginine Inhibit Insulin Aggregation? A Combined Protein Crystallography, Capillary Electrophoresis, and Molecular Simulation Study, J. Phys. Chem. B, 122 (2018) 10069–10076.

DOI: 10.26434/chemrxiv.6797525

Google Scholar

[3] A.F. Shah, J.A. Morris, M. Wray, Pathogenesis of Alzheimer's disease: Multiple interacting causes against which amyloid precursor protein protects, Med. Hypotheses, 143 (2020) 110035.

DOI: 10.1016/j.mehy.2020.110035

Google Scholar

[4] J. Pujols, S. Peña-Díaz, I. Pallarès, S. Ventura, Chemical Chaperones as Novel Drugs for Parkinson's Disease, Trends Mol. Med., 26 (2020) 408–421.

DOI: 10.1016/j.molmed.2020.01.005

Google Scholar

[5] E.J. Nettleton, P. Tito, M. Sunde, M. Bouchard, C.M. Dobson, C. V Robinson, Characterization of the oligomeric states of insulin in self-assembly and amyloid fibril formation by mass spectrometry, Biophys. J., 79 (2000) 1053–1065.

DOI: 10.1016/s0006-3495(00)76359-4

Google Scholar

[6] A. Ahmad, I.S. Millett, S. Doniach, V.N. Uversky, A.L. Fink, Partially folded intermediates in insulin fibrillation, Biochemistry, 42 (2003) 11404–11416.

DOI: 10.1021/bi034868o

Google Scholar

[7] L. Jorgensen, P. Bennedsen, S.V. Hoffmann, R.L. Krogh, C. Pinholt, M. Groenning, S. Hostrup, J.T. Bukrinsky, Adsorption of insulin with varying self-association profiles to a solid Teflon surface - Influence on protein structure, fibrillation tendency and thermal stability, Eur. J. Pharm. Sci., 42 (2011) 509–516.

DOI: 10.1016/j.ejps.2011.02.007

Google Scholar

[8] A. Ahmad, I.S. Millett, S. Doniach, V.N. Uversky, A.L. Fink, Stimulation of insulin fibrillation by urea-induced intermediates, J. Biol. Chem., 279 (2004) 14999–5013.

DOI: 10.1074/jbc.m313134200

Google Scholar

[9] R.F. Pasternack, E.J. Gibbs, S. Sibley, L. Woodard, P. Hutchinson, J. Genereux, K. Kristian, Formation kinetics of insulin-based amyloid gels and the effect of added metalloporphyrins, Biophys. J., 90 (2006) 1033–1042.

DOI: 10.1529/biophysj.105.068650

Google Scholar

[10] A. Noormägi, J. Gavrilova, J. Smirnova, V. Tõugu, P. Palumaa, Zn(II) ions co-secreted with insulin suppress inherent amyloidogenic properties of monomeric insulin, Biochem. J., 430 (2010) 511–518.

DOI: 10.1042/bj20100627

Google Scholar

[11] J.L. Whittingham, D.J. Scott, K. Chance, A. Wilson, J. Finch, J. Brange, G. Guy Dodson, Insulin at pH 2: Structural analysis of the conditions promoting insulin fibre formation, J. Mol. Biol., 318 (2002) 479–490.

DOI: 10.1016/s0022-2836(02)00021-9

Google Scholar

[12] R. Liu, R. Su, W. Qi, Z. He, Photo-induced inhibition of insulin amyloid fibrillation on online laser measurement, Biochem. Biophys. Res. Commun., 409 (2011) 229–234.

DOI: 10.1016/j.bbrc.2011.04.132

Google Scholar

[13] M. Ishigaki, K. Morimoto, E. Chatani, Y. Ozaki, Exploration of Insulin Amyloid Polymorphism Using Raman Spectroscopy and Imaging, Biophys. J., 118 (2020) 2997–3007.

DOI: 10.1016/j.bpj.2020.04.031

Google Scholar

[14] N. Codina, D. Hilton, C. Zhang, N. Chakroun, S.S. Ahmad, S.J. Perkins, P.A. Dalby, An Expanded Conformation of an Antibody Fab Region by X-Ray Scattering, Molecular Dynamics, and smFRET Identifies an Aggregation Mechanism, J. Mol. Biol., 431 (2019) 1409–1425.

DOI: 10.1016/j.jmb.2019.02.009

Google Scholar

[15] A. Patriati, N. Suparno, G.T. Sulungbudi, M. Mujamilah, E.G.R. Putra, Structural change of apoferritin as the effect of ph change: Dls and sans study, Indones. J. Chem., 20 (2020).

DOI: 10.22146/ijc.50630

Google Scholar

[16] C.A. Brosey, J.A. Tainer, Evolving SAXS versatility: solution X-ray scattering for macromolecular architecture, functional landscapes, and integrative structural biology, Curr. Opin. Struct. Biol., 58 (2019) 197–213.

DOI: 10.1016/j.sbi.2019.04.004

Google Scholar

[17] R. Phinjaroenphan, S. Soontaranon, P. Chirawatkul, J. Chaiprapa, W. Busayaporn, S. Pongampai, S. Lapboonreung, S. Rugmai, SAXS/WAXS Capability and Absolute Intensity Measurement Study at the SAXS Beamline of the Siam Photon Laboratory, J. Phys. Conf. Ser., 425 (2013) 132019.

DOI: 10.1088/1742-6596/425/13/132019

Google Scholar

[18] F. Zhang, M.W.A. Skoda, R.M.J. Jacobs, R.A. Martin, C.M. Martin, F. Schreiber, Protein interactions studied by SAXS: Effect of ionic strength and protein concentration for BSA in aqueous solutions, J. Phys. Chem. B, 111 (2007) 251–259.

DOI: 10.1021/jp0649955

Google Scholar

[19] S. Rugmai, soo, Small Angle X-ray Scattering Image Tool (SAXSIT) Manual, (2013).

Google Scholar

[20] S.R. Kline, Reduction and analysis of SANS and USANS data using IGOR Pro, J. Appl. Crystallogr., 39 (2006) 895–900.

DOI: 10.1107/s0021889806035059

Google Scholar

[21] F. Herranz-Trillo, M. Groenning, A. van Maarschalkerweerd, R. Tauler, B. Vestergaard, P. Bernadó, Structural Analysis of Multi-component Amyloid Systems by Chemometric SAXS Data Decomposition, Structure, 25 (2017) 5–15.

DOI: 10.1016/j.str.2016.10.013

Google Scholar

[22] C.G. Frankær, P. Sønderby, M.B. Bang, R.V. Mateiu, M. Groenning, J. Bukrinski, P. Harris, Insulin Fibrillation: The Influence and Coordination of Zn2+, J. Struct. Biol., 199 (2017) 27–38.

DOI: 10.1016/j.jsb.2017.05.006

Google Scholar

[23] Z. Yong, D. Yingjie, L. Ming, D.Q.M. Craig, L. Zhengqiang, A spectroscopic investigation into the interaction between bile salts and insulin in alkaline aqueous solution, J. Colloid Interface Sci., 337 (2009) 322–331.

DOI: 10.1016/j.jcis.2009.05.056

Google Scholar

[24] B. Vestergaard, M. Groenning, M. Roessle, J.S. Kastrup, M. Van De Weert, J.M. Flink, S. Frokjaer, M. Gajhede, D.I. Svergun, A helical structural nucleus is the primary elongating unit of insulin amyloid fibrils, PLoS Biol., 5 (2007) 1089–1097.

DOI: 10.1371/journal.pbio.0050134

Google Scholar