[1]
F. Botero, J. Renteria, J. G. Torres, H. E. Jaramillo, N. A. de Sánchez, and H. S. Sthepa, Diseño de un molino de bolas tipo atritor,, Supl. la Rev. Latinoam. Metal. y Mater., (2009).
Google Scholar
[2]
W. Wong-Angel, L. Téllez-Jurado, J. Chávez-Alcalá, E. Chavira-Martínez, and V. Verduzco-Cedeño, Effect of copper on the mechanical properties of alloys formed by powder metallurgy,, Mater. Des., vol. 58, p.12–18, (2014).
DOI: 10.1016/j.matdes.2014.02.002
Google Scholar
[3]
J. P. Annaraj, N. Bose, and N. Rajesh Jesudoss Hynes, A review on mechanical and tribological properties of sintered copper matrix composites,, in AIP Conference Proceedings, Aug. 2019, vol. 2142,.
DOI: 10.1063/1.5122419
Google Scholar
[4]
B. Tomiczek, L. Dobrzański, M. Adamiak, and K. Labisz, Effect of milling conditions on microstructure and properties of AA6061/halloysite composites,, Procedia Manuf., vol. 2, p.402–407, (2015).
DOI: 10.1016/j.promfg.2015.07.071
Google Scholar
[5]
A. Dias, A. Silva, C. Rodrigues, M. Melo, G. Rodrigues, and G. Silva, Effect of high energy milling time of the aluminum bronze alloy obtained by powder metallurgy with niobium carbide addition,, Mater. Res. Bras., vol. 20, (2017).
DOI: 10.1590/1980-5373-mr-2016-0274
Google Scholar
[6]
F. J. Baldenebro-López et al., Synthesis, Microstructural Characterization and Microhardness of AlCoNi-SiC Composite Prepared by Mechanical Alloying,, Mater. Res., vol. 19, no. suppl 1, p.118–124, Jan. 2017,.
DOI: 10.1590/1980-5373-mr-2016-0815
Google Scholar
[7]
C. Keller, K. Tabalaiev, G. Marnier, J. Noudem, X. Sauvage, and E. Hug, Influence of spark plasma sintering conditions on the sintering and functional properties of an ultra-fine grained 316L stainless steel obtained from ball-milled powder,, Mater. Sci. Eng. A Elsevier, vol. 665, p.125–124, (2016).
DOI: 10.1016/j.msea.2016.04.039
Google Scholar
[8]
O. Uwakweh, A. Jordan, and P. Maziasz, Thermal transformations in mechanically alloyed Fe-Zn-Si materials,, Metall. Mater. Trans. A, vol. 31, no. 11, p.2747–2754, Nov. 2000,.
DOI: 10.1007/bf02830334
Google Scholar
[9]
A. M. Sadoun, A. Fathy, A. Abu-Oqail, H. T. Elmetwaly, and A. Wagih, Structural, mechanical and tribological properties of Cu–ZrO2/GNPs hybrid nanocomposites,, Ceram. Int., vol. 46, no. 6, p.7586–7594, Apr. 2020,.
DOI: 10.1016/j.ceramint.2019.11.258
Google Scholar
[10]
J. W. Boley, E. L. White, and R. K. Kramer, Mechanically sintered gallium-indium nanoparticles,, Adv. Mater., vol. 27, no. 14, p.2355–2360, Apr. 2015,.
DOI: 10.1002/adma.201404790
Google Scholar
[11]
G. B. Schaffer, B. J. Hall, S. J. Bonner, S. H. Huo, and T. B. Sercombe, The effect of the atmosphere and the role of pore filling on the sintering of aluminium,, Acta Mater., vol. 54, no. 1, p.131–138, Jan. 2006,.
DOI: 10.1016/j.actamat.2005.08.032
Google Scholar
[12]
C. Liang, S.-H. Chang, J.-R. Huang, K.-T. Huang, and S.-T. Lin, Investigation of Submicron Powder Fabricated Cr50Cu50 Alloys Using Various Vacuum Hot-Press Sintering Temperatures,, Mater. Trans., vol. 56, no. 7, p.1127–1132, Jul. 2015,.
DOI: 10.2320/matertrans.m2015088
Google Scholar
[13]
S. Mula, J. Panigrahi, P. C. Kang, and C. C. Koch, Effect of microwave sintering over vacuum and conventional sintering of Cu based nanocomposites,, J. Alloys Compd., vol. 588, p.710–715, Mar. 2014,.
DOI: 10.1016/j.jallcom.2013.11.222
Google Scholar
[14]
M. S. M. Ghazali, M. S. Shaifudin, W. R. W. Abdullah, W. M. I. Kamaruzzaman, M. F. M. Fekeri, and M. A. Zulkifli, Conventional Sintering Effects on the Microstructure and Electrical Characteristics of Low-Voltage Ceramic Varistor,, in Sintering Technology - Method and Application, InTech, (2018).
DOI: 10.5772/intechopen.78652
Google Scholar
[15]
J. M. Torralba, P. Alvaredo, and A. García-Junceda, High-entropy alloys fabricated via powder metallurgy. A critical review,, Powder Metallurgy, vol. 62, no. 2. Taylor and Francis Ltd., p.84–114, Mar. 15, 2019,.
DOI: 10.1080/00325899.2019.1584454
Google Scholar
[16]
A. Kumar, K. Jayasankar, M. Debata, and A. Mandal, Mechanical alloying and properties of immiscible Cu-20 wt.% Mo alloy,, J. Alloys Compd., vol. 647, p.1040–1047, Oct. 2015,.
DOI: 10.1016/j.jallcom.2015.06.129
Google Scholar
[17]
A. Kumar, K. Jayasankar, M. Debata, and A. Mandal, Mechanical alloying and properties of immiscible Cu-20 wt.% Mo alloy,, J. Alloys Compd., vol. 647, p.1040–1047, Jul. 2015,.
DOI: 10.1016/j.jallcom.2015.06.129
Google Scholar
[18]
J. Cornejo, V. Martínez, and S. Ordoñez, Cu-Mo Alloys Obtained by Mechanical Alloying,, Key Eng. Mater., vol. 189–191, p.561–566, Feb. 2001,.
DOI: 10.4028/www.scientific.net/kem.189-191.561
Google Scholar
[19]
A. H.-A. S. of Metals, N. Edition, M. Park, and 1984, Volume 7: Powder Metallurgy.,.
Google Scholar