Hardness Evaluation of 88Cu-4Pb-4Sn-4Zn Alloy by Mechanical Alloying with Oxidizing Atmosphere

Article Preview

Abstract:

The investigation of new materials that have properties such as resistance to high temperatures, wear resistance, rigidity, and low weight, involves the use of technological processes with more and more advantages. For this purpose, mechanical alloying is a widely used technique, which consist of high-energy impact between balls inside a container, where constant collisions deform and fracture the material, achieving the alloy of the particles in a solid state. This work focuses on the Vickers hardness evaluation of the copper matrix alloy with 4% Pb, 4% Sn and 4% Zn, in an oxidizing atmosphere, sintered at 800 °C and 900 °C, using milling times of 3 hours, 6 hours and 9 hours. The results show that there is a relationship between the hardness obtained, in the two groups of specimens at 800 ° C and 900 ° C, with the grinding time and the sintering temperature, among others used in the process. An average maximum hardness of 53.4 HV was obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-16

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Botero, J. Renteria, J. G. Torres, H. E. Jaramillo, N. A. de Sánchez, and H. S. Sthepa, Diseño de un molino de bolas tipo atritor,, Supl. la Rev. Latinoam. Metal. y Mater., (2009).

Google Scholar

[2] W. Wong-Angel, L. Téllez-Jurado, J. Chávez-Alcalá, E. Chavira-Martínez, and V. Verduzco-Cedeño, Effect of copper on the mechanical properties of alloys formed by powder metallurgy,, Mater. Des., vol. 58, p.12–18, (2014).

DOI: 10.1016/j.matdes.2014.02.002

Google Scholar

[3] J. P. Annaraj, N. Bose, and N. Rajesh Jesudoss Hynes, A review on mechanical and tribological properties of sintered copper matrix composites,, in AIP Conference Proceedings, Aug. 2019, vol. 2142,.

DOI: 10.1063/1.5122419

Google Scholar

[4] B. Tomiczek, L. Dobrzański, M. Adamiak, and K. Labisz, Effect of milling conditions on microstructure and properties of AA6061/halloysite composites,, Procedia Manuf., vol. 2, p.402–407, (2015).

DOI: 10.1016/j.promfg.2015.07.071

Google Scholar

[5] A. Dias, A. Silva, C. Rodrigues, M. Melo, G. Rodrigues, and G. Silva, Effect of high energy milling time of the aluminum bronze alloy obtained by powder metallurgy with niobium carbide addition,, Mater. Res. Bras., vol. 20, (2017).

DOI: 10.1590/1980-5373-mr-2016-0274

Google Scholar

[6] F. J. Baldenebro-López et al., Synthesis, Microstructural Characterization and Microhardness of AlCoNi-SiC Composite Prepared by Mechanical Alloying,, Mater. Res., vol. 19, no. suppl 1, p.118–124, Jan. 2017,.

DOI: 10.1590/1980-5373-mr-2016-0815

Google Scholar

[7] C. Keller, K. Tabalaiev, G. Marnier, J. Noudem, X. Sauvage, and E. Hug, Influence of spark plasma sintering conditions on the sintering and functional properties of an ultra-fine grained 316L stainless steel obtained from ball-milled powder,, Mater. Sci. Eng. A Elsevier, vol. 665, p.125–124, (2016).

DOI: 10.1016/j.msea.2016.04.039

Google Scholar

[8] O. Uwakweh, A. Jordan, and P. Maziasz, Thermal transformations in mechanically alloyed Fe-Zn-Si materials,, Metall. Mater. Trans. A, vol. 31, no. 11, p.2747–2754, Nov. 2000,.

DOI: 10.1007/bf02830334

Google Scholar

[9] A. M. Sadoun, A. Fathy, A. Abu-Oqail, H. T. Elmetwaly, and A. Wagih, Structural, mechanical and tribological properties of Cu–ZrO2/GNPs hybrid nanocomposites,, Ceram. Int., vol. 46, no. 6, p.7586–7594, Apr. 2020,.

DOI: 10.1016/j.ceramint.2019.11.258

Google Scholar

[10] J. W. Boley, E. L. White, and R. K. Kramer, Mechanically sintered gallium-indium nanoparticles,, Adv. Mater., vol. 27, no. 14, p.2355–2360, Apr. 2015,.

DOI: 10.1002/adma.201404790

Google Scholar

[11] G. B. Schaffer, B. J. Hall, S. J. Bonner, S. H. Huo, and T. B. Sercombe, The effect of the atmosphere and the role of pore filling on the sintering of aluminium,, Acta Mater., vol. 54, no. 1, p.131–138, Jan. 2006,.

DOI: 10.1016/j.actamat.2005.08.032

Google Scholar

[12] C. Liang, S.-H. Chang, J.-R. Huang, K.-T. Huang, and S.-T. Lin, Investigation of Submicron Powder Fabricated Cr50Cu50 Alloys Using Various Vacuum Hot-Press Sintering Temperatures,, Mater. Trans., vol. 56, no. 7, p.1127–1132, Jul. 2015,.

DOI: 10.2320/matertrans.m2015088

Google Scholar

[13] S. Mula, J. Panigrahi, P. C. Kang, and C. C. Koch, Effect of microwave sintering over vacuum and conventional sintering of Cu based nanocomposites,, J. Alloys Compd., vol. 588, p.710–715, Mar. 2014,.

DOI: 10.1016/j.jallcom.2013.11.222

Google Scholar

[14] M. S. M. Ghazali, M. S. Shaifudin, W. R. W. Abdullah, W. M. I. Kamaruzzaman, M. F. M. Fekeri, and M. A. Zulkifli, Conventional Sintering Effects on the Microstructure and Electrical Characteristics of Low-Voltage Ceramic Varistor,, in Sintering Technology - Method and Application, InTech, (2018).

DOI: 10.5772/intechopen.78652

Google Scholar

[15] J. M. Torralba, P. Alvaredo, and A. García-Junceda, High-entropy alloys fabricated via powder metallurgy. A critical review,, Powder Metallurgy, vol. 62, no. 2. Taylor and Francis Ltd., p.84–114, Mar. 15, 2019,.

DOI: 10.1080/00325899.2019.1584454

Google Scholar

[16] A. Kumar, K. Jayasankar, M. Debata, and A. Mandal, Mechanical alloying and properties of immiscible Cu-20 wt.% Mo alloy,, J. Alloys Compd., vol. 647, p.1040–1047, Oct. 2015,.

DOI: 10.1016/j.jallcom.2015.06.129

Google Scholar

[17] A. Kumar, K. Jayasankar, M. Debata, and A. Mandal, Mechanical alloying and properties of immiscible Cu-20 wt.% Mo alloy,, J. Alloys Compd., vol. 647, p.1040–1047, Jul. 2015,.

DOI: 10.1016/j.jallcom.2015.06.129

Google Scholar

[18] J. Cornejo, V. Martínez, and S. Ordoñez, Cu-Mo Alloys Obtained by Mechanical Alloying,, Key Eng. Mater., vol. 189–191, p.561–566, Feb. 2001,.

DOI: 10.4028/www.scientific.net/kem.189-191.561

Google Scholar

[19] A. H.-A. S. of Metals, N. Edition, M. Park, and 1984, Volume 7: Powder Metallurgy.,.

Google Scholar