[1]
X. Zhang, L. Meng, Q. Lu, Z. Fei, P.J. Dyson, Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes, Biomaterials 30 (2009) 6041–6047.
DOI: 10.1016/j.biomaterials.2009.07.025
Google Scholar
[2]
F. Jahouh, R. Saksena, D. Aiello, A. Napoli, G. Sindona, P. Kováč, J.H. Banoub, Glycation sites in neoglycoglycoconjugates from the terminal monosaccharide antigen of the O-PS of Vibrio cholerae O1, serotype Ogawa, and BSA revealed by matrix-assisted laser desorption-ionization tandem mass spectrometry, J Mass Spectrom 45 (2010) 1148-1159.
DOI: 10.1002/jms.1796
Google Scholar
[3]
A. Napoli, C.M. Athanassopoulos, P. Moschidis, D. Aiello, L. Di Donna, F. Mazzotti, G. Sindona, Solid phase isobaric mass tag reagent for simultaneous protein identification and assay, Anal. Chem. 82 (2010) 5552-5560.
DOI: 10.1021/ac1004212
Google Scholar
[4]
R.B. Li, R.A. Wu, L.A. Zhao, Z.Y. Hu, S.J. Guo, X.L. Pan, H.F. Zou, Folate and iron difunctionalized multiwall carbon nanotubes as dual-targeted drug nanocarrier to cancer cells, Carbon 49 (2011) 1797–1805.
DOI: 10.1016/j.carbon.2011.01.003
Google Scholar
[5]
D. Aiello, C. Siciliano, F. Mazzotti, L. Di Donna, C.M. Athanassopoulos, A. Napoli, A rapid MALDI MS/MS based method for assessing saffron (Crocus sativus L.) adulteration, Food Chem. 307 (2020) 125527.
DOI: 10.1016/j.foodchem.2019.125527
Google Scholar
[6]
D. Chillè, D. Aiello, G.I. Grasso, O. Giuffrè, A. Napoli, C. Sgarlata, C. Foti, Complexation of As(III) by phosphonate ligands in aqueous fluids: Thermodynamic behavior, chemical binding forms and sequestering abilities, J Environ Sci (China) 94 (2020) 100-110.
DOI: 10.1016/j.jes.2020.03.056
Google Scholar
[7]
W. Wu, R.T. Li, X.C. Bian, Z.S. Zhu, D. Ding, X.L. Li, Z.J. Jia, X.Q. Jiang, Y.Q. Hu, Covalently combining carbon nanotubes with anticancer agent: Preparation and antitumor activity, ACS Nano 3 (2009) 2740–2750.
DOI: 10.1021/nn9005686
Google Scholar
[8]
S. Materazzi, S. Vecchio, L.W. Wo, S. De Angelis Curtis, TG-MS and TG-FTIR studies of imidazole-substituted coordination compounds: Co(II) and Ni(II)-complexes of bis(1-methylimidazol-2-yl)ketone Thermochimica Acta, 543 (2012) 183-187.
DOI: 10.1016/j.tca.2012.05.013
Google Scholar
[9]
D.Aiello, P. Cardiano, R.M. Cigala, P. Gans, F. Giacobello, O. Giuffrè, A. Napoli, S. Sammartano, Sequestering Ability of Oligophosphate Ligands toward Al3+ in Aqueous Solution, J. Chem. Eng. Data 62 (2017) 3981-3990.
DOI: 10.1021/acs.jced.7b00685
Google Scholar
[10]
H. Ali-Boucetta, K.T. Al-Jamal, D. McCarthy, M. Prato, A. Bianco, K. Kostarelos, Multiwalled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics, Chem. Commun. 4 (2008) 459–461.
DOI: 10.1039/b712350g
Google Scholar
[11]
D. Aiello, F. Casadonte, R. Terracciano, R. Damiano, R. Savino, G. Sindona, A. Napoli, Targeted proteomic approach in prostatic tissue: A panel of potential biomarkers for cancer detection, Oncoscience 3 (2016) 220-241.
DOI: 10.18632/oncoscience.313
Google Scholar
[12]
N.M. Dinan, F. Atyabi, M.R. Rouini, M. Amini, A.A. Golabchifar, R. Dinarvand, Doxorubicin loaded folate-targeted carbon nanotubes: Preparation, cellular internalization, in vitro cytotoxicity and disposition kinetic study in the isolated perfused rat liver, Mater. Sci. Eng. C 39 (2014) 47–55.
DOI: 10.1016/j.msec.2014.01.055
Google Scholar
[13]
A. Ruggiero, C.H. Villa, J.P. Holland, S.R. Sprinkle, C. May, J.S. Lewis, D.A. Scheinberg, M.R. McDevitt, Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes, Int. J. Nanomed. 5 (2010) 783–802.
DOI: 10.2147/ijn.s13300
Google Scholar
[14]
M. Ouyang, E.E. White, H. Ren, Q. Guo, I. Zhang, H. Gao, S. Yanyan, X. Chen, Y. Weng, A. Da Fonseca, S. Shah, E.R. Manuel, L. Zhang, S.L. Vonderfecht, D. Alizadeh, J.M. Berlin, B. Badie, Metronomic doses of temozolomide enhance the efficacy of carbon nanotube CPG immunotherapy in an invasive glioma model, PLoS ONE 11 (2016) e0148139.
DOI: 10.1371/journal.pone.0148139
Google Scholar
[15]
T.R. Fadel, F.A. Sharp, N. Vudattu, R. Ragheb, J. Garyu, D. Kim, E. Hong, N. Li, G.L. Haller, L.D. Pfefferle, S. Justesen, K.C. Herold, T.M. Fahmy, A carbon nanotube-polymer composite for T-cell therapy, Nat. Nanotechnol. 9 (2014) 639–647.
DOI: 10.1038/nnano.2014.154
Google Scholar
[16]
D. Pantarotto, R. Singh, D. McCarthy, M. Erhardt, J.P. Briand, M. Prato, K. Kostarelos, A. Bianco, Functionalized carbon nanotubes for plasmid DNA gene delivery, Angew. Chem. Int. Ed. Engl. 43 (2004) 5242–5246.
DOI: 10.1002/anie.200460437
Google Scholar
[17]
D. Aiello, E. Furia, C. Siciliano, D. Bongiorno, A. Napoli, Study of the coordination of ortho-tyrosine and trans-4-hydroxyproline with aluminum(III) and iron(III), J. Mol. Liq. 269 (2018) 387-397.
DOI: 10.1016/j.molliq.2018.08.074
Google Scholar
[18]
M. Ahmed, X. Jiang, Z. Deng, R. Narain, Cationic glyco-functionalized single-walled carbon nanotubes as efficient gene delivery vehicles, Bioconjug. Chem. 20 (2009) 2017–(2022).
DOI: 10.1021/bc900229v
Google Scholar
[19]
R. Krajcik, A. Jung, A. Hirsch, W. Neuhuber, O. Zolk, Functionalization of carbon nanotubes enables non-covalent binding and intracellular delivery of small interfering RNA for efficient knockdown of genes, Biochem. Biophys. Res. Commun. 369 (2008) 595–602.
DOI: 10.1016/j.bbrc.2008.02.072
Google Scholar
[20]
D. Aiello, A. Giambona, F. Leto, C. Passarello, G. Damiani, A. Maggio, C. Siciliano, A. Napoli, Human coelomic fluid investigation: A MS-based analytical approach to prenatal screening, Sci. Rep. 8 (2018) 10973.
DOI: 10.1038/s41598-018-29384-9
Google Scholar
[21]
Z. Zhang, X. Yang, Y. Zhang, B. Zeng, S. Wang, T. Zhu, R.B.S. Roden, Y. Chen, R. Yang, Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth, Clin. Cancer Res. 12 (2006) 4933–4939.
DOI: 10.1158/1078-0432.ccr-05-2831
Google Scholar
[22]
M.A. Navarra, S. Materazzi, S. Panero, B. Scrosati, PVdF-based membranes for DMFC applications Journal of the Electrochemical Society, 150 (2003) A1528-A1532.
DOI: 10.1149/1.1615607
Google Scholar
[23]
M.G. Sabbieti, L. Marchetti, M.G. Gabrielli, M. Manghi, S. Materazzi, G. Menghi, L.G. Raisz, M.M. Hurley, Prostaglandins differently regulate FGF-2 and FGF receptor expression and induce nuclear translocation in osteoblasts via MAPK kinase, Cell and Tissue Res. 319 (2005) 267-278.
DOI: 10.1007/s00441-004-0981-8
Google Scholar
[24]
M.G. Sabbieti, D. Agas, G. Santoni, S. Materazzi, G. Menghi, L. Marchetti, Involvement of p.53 in phthalate effects on mouse and rat osteoblasts, J. Cell. Biochem. 107 (2009) 316-327.
DOI: 10.1002/jcb.22127
Google Scholar
[25]
D. Agas, L. Marchetti, G. Menghi, S. Materazzi, G. Materazzi, M. Capacchietti, M.M. Hurley, M.G. Sabbieti, Anti-apoptotic Bcl-2 enhancing requires FGF-2/FGF receptor 1 binding in mouse osteoblasts, J. Cell. Physiol. 214 (2008) 145-152.
DOI: 10.1002/jcp.21170
Google Scholar
[26]
A. Gentili, F. Caretti, G. D'Ascenzo, L. Mainero Rocca, S. Marchese, S. Materazzi, D. Perret, Simultaneous determination of trichothecenes A, B, and D in maize food products by LC-MS-MS, Chromatographia 66 (2007) 669-676.
DOI: 10.1365/s10337-007-0411-7
Google Scholar
[27]
V. Migliorati, P. Ballirano, L. Gontrani, S. Materazzi, F. Ceccacci, R. Caminiti, A combined theoretical and experimental study of solid octyl and decylammonium chlorides and of their aqueous solutions, J. Phys. Chem. B 117 (2013) 7806-7818.
DOI: 10.1021/jp403103w
Google Scholar
[28]
D. Aiello, S. Materazzi, R. Risoluti, H. Thangavel, L. Di Donna, F. Mazzotti, F. Casadonte, C. Siciliano, G. Sindona, A. Napoli, A major allergen in rainbow trout (Oncorhynchus mykiss): complete sequences of parvalbumin by MALDI tandem mass spectrometry, Mol. BioSyst. 11 (2015) 2373-2382.
DOI: 10.1039/c5mb00148j
Google Scholar
[29]
A. Napoli, D. Aiello, G. Aiello, M.S. Cappello, L. Di Donna, F. Mazzotti, S. Materazzi, M. Fiorillo, G. Sindona, Mass spectrometry-based proteomic approach in oenococcus oeni enological starter, J. Proteome Res. 13 (2014) 2856-2866.
DOI: 10.1021/pr4012798
Google Scholar
[30]
C. Perrino, E. Marconi, L. Tofful, C. Farao, S. Materazzi, S. Canepari, Thermal stability of inorganic and organic compounds in atmospheric particulate matter, Atmospheric Environ. 54 (2012) 36-43.
DOI: 10.1016/j.atmosenv.2012.02.078
Google Scholar
[31]
M. Sergi, A. Gentili, D. Perret, S. Marchese, S. Materazzi, R. Curini, MSPD extraction of sulphonamides from meat followed by LC tandem MS determination, Chromatographia 65 (2007) 757-761.
DOI: 10.1365/s10337-007-0245-3
Google Scholar
[32]
L. Salvatore, N. Gallo, D. Aiello, P. Lunetti, A. Barca, L. Blasi, M. Madaghiele, S. Bettini, G. Giancane, M. Hasan, V. Borovkov, M.L. Natali, L. Campa, L. Valli, L. Capobianco, A. Napoli, A. Sannino, An insight on type I collagen from horse tendon for the manufacture of implantable device, Int. J. Biol. Macromol. 154 (2020) 291-306.
DOI: 10.1016/j.ijbiomac.2020.03.082
Google Scholar
[33]
D. Aiello, C. Siciliano, F. Mazzotti, L.D. Donna, R. Risoluti, A. Napoli, Protein extraction, enrichment and MALDI MS and MS/MS analysis from bitter orange leaves (citrus aurantium), Molecules 25 (2020) 1485.
DOI: 10.3390/molecules25071485
Google Scholar
[34]
S. Imbrogno, D. Aiello, M. Filice, S. Leo, R. Mazza, M.C. Cerra, A. Napoli, MS-based proteomic analysis of cardiac response to hypoxia in the goldfish (Carassius auratus), Sci. Rep. 9 (2019) 18953.
DOI: 10.1038/s41598-019-55497-w
Google Scholar
[35]
G. Falcone, C. Foti, A. Gianguzza, O. Giuffrè, A. Napoli, A. Pettignano, D. Piazzese, Sequestering ability of some chelating agents towards methylmercury (II), Anal. Bioanal. Chem. 405 (2013) 881-893.
DOI: 10.1007/s00216-012-6336-5
Google Scholar
[36]
K. Kurdziel, T. Głowiak, S. Materazzi, J. Jezierska, Crystal structure and physico-chemical properties of cobalt(II) and manganese(II) complexes with imidazole-4-acetate anion Polyhedron, 22 (2003) 3123-31-28.
DOI: 10.1016/j.poly.2003.07.004
Google Scholar
[37]
N.K. Mehra, A.K. Verma, P.R. Mishra, N.K. Jain, The cancer targeting potential of D-𝛼-tocopheryl polyethylene glycol 1000 succinate tethered multi walled carbon nanotubes, Biomaterials 35 (2014) 4573–4588.
DOI: 10.1016/j.biomaterials.2014.02.022
Google Scholar
[38]
L. Marchetti, M.G. Sabbieti, M. Menghi, S. Materazzi, M.M Hurley, G. Menghi, Effects of phthalate esters on actin cytoskeleton of Py1a rat osteoblasts Histology and Histopathology, 17 (2002) 1061-1066.
DOI: 10.1076/ejom.39.3.155.4672
Google Scholar
[39]
S. Vecchio, S. Materazzi, L.W. Wo, S. De Angelis Curtis, Thermoanalytical study of imidazole-substituted coordination compounds: Cu(II)- and Zn(II)-complexes of bis(1-methylimidazol-2-yl)ketone, Thermochim. Acta 568 (2013) 31-37.
DOI: 10.1016/j.tca.2013.06.016
Google Scholar
[40]
G. M. Neelgund, A. Oki, Z. Luo, Antimicrobial activity of CdS and Ag2S quantum dots immobilized on Poly(amidoamine) grafted carbon nanotubes, Colloids Surf. B 100 (2012) 215–221.
DOI: 10.1016/j.colsurfb.2012.05.012
Google Scholar
[41]
D. Aiello, C. Siciliano, F. Mazzotti, L. Di Donna, C.M. Athanassopoulos, A. Napoli, Molecular species fingerprinting and quantitative analysis of saffron (Crocus sativus L.) for quality control by MALDI mass spectrometry, RSC Adv. 8 (2018) 36104-36113.
DOI: 10.1039/c8ra07484d
Google Scholar
[42]
S. Materazzi, S. De Angelis Curtis, S. Vecchio Ciprioti, R. Risoluti, J. Finamore, Thermogravimetric characterization of dark chocolate, J. Therm. Anal. Calorim. 116 (2014) 93–98.
DOI: 10.1007/s10973-013-3495-3
Google Scholar
[43]
S. Materazzi, R. Risoluti, A. Napoli, EGA-MS study to characterize the thermally induced decomposition of Co(II), Ni(II), Cu(II) and Zn(II) complexes with 1,1-diaminobutane- Schiff base, Thermochim. Acta 606 (2015) 90–94.
DOI: 10.1016/j.tca.2015.03.009
Google Scholar
[44]
S. De Angelis Curtis, K. Kurdziel, S. Materazzi, S. Vecchio, Crystal structure and thermoanalytical study of a manganese (II) complex with 1-allylimidazole, J. Therm. Anal. Calorim. 92 (2008) 109-114.
DOI: 10.1007/s10973-007-8747-7
Google Scholar
[45]
S. Materazzi, S. Vecchio, L.W. Wo, S. De Angelis Curtis, TG-MS and TG-FTIR studies of imidazole-substituted coordination compounds: Co(II) and Ni(II)-complexes of bis(1-methylimidazol-2-yl)ketone, Thermochim. Acta 543 (2012) 183-187.
DOI: 10.1016/j.tca.2012.05.013
Google Scholar
[46]
R. Risoluti, M.A. Fabiano, G. Gullifa, S. Vecchio Ciprioti, S. Materazzi, FTIR-evolved gas analysis in recent thermoanalytical investigations, Appl. Spectrosc. Rev. 52 (2017), 39-72.
DOI: 10.1080/05704928.2016.1207658
Google Scholar
[47]
R. Risoluti, D. Piazzese, A. Napoli, S. Materazzi, Study of [2-(2'-pyridyl)imidazole] complexes to confirm two main characteristic thermoanalytical behaviors of transition metal complexes based on imidazole derivatives, J. Anal. Appl. Pyrolysis 117 (2016) 82-87.
DOI: 10.1016/j.jaap.2015.11.018
Google Scholar
[48]
R. Risoluti, S. Materazzi, F. Sorrentino, L. Maffei, P. Caprari, Thermogravimetric analysis coupled with chemometrics as a powerful predictive tool for β-thalassemia screening, Talanta 159 (2016) 425-432.
DOI: 10.1016/j.talanta.2016.06.037
Google Scholar
[49]
F. Crea, G. Falcone, C. Foti, O. Giuffrè, S. Materazzi, Thermodynamic data for Pb2+ and Zn2+ sequestration by biologically important S-donor ligands, at different temperatures and ionic strengths, New J. Chem. 38 (2014) 3973-3983.
DOI: 10.1039/c4nj00830h
Google Scholar
[50]
C. Bretti, F. Crea, C. De Stefano, C. Foti, S. Materazzi, G. Vianelli, Thermodynamic properties of dopamine in aqueous solution. Acid-base properties, distribution, and activity coefficients in NaCl aqueous solutions at different ionic strengths and temperatures, Chem. Eng. J. 58 (2013) 2835-2847.
DOI: 10.1021/je400568u
Google Scholar
[51]
S. Materazzi, S. Vecchio, L.W. Wo, S. De Angelis Curtis, Thermoanalytical studies of imidazole-substituted coordination compounds: Mn(II)-complexes of bis(1-methylimidazol-2-yl)ketone, J. Therm. Anal. Calorim. 103 (2011) 59-64.
DOI: 10.1007/s10973-010-1137-6
Google Scholar
[52]
S. Materazzi, R. Risoluti, Evolved gas analysis by mass spectrometry, Appl. Spectrosc. Rev. 49 (2014) 635-665.
DOI: 10.1080/05704928.2014.887021
Google Scholar
[53]
S. Materazzi, G. Peluso, L. Ripani, R. Risoluti, High-throughput prediction of AKB48 in emerging illicit products by NIR spectroscopy and chemometrics, Microchem. J. 134 (2017) 277-283.
DOI: 10.1016/j.microc.2017.06.014
Google Scholar
[54]
R. Risoluti, A. Gregori, S. Schiavone, S. Materazzi, click and Screen, Technology for the Detection of Explosives on Human Hands by a Portable MicroNIR-Chemometrics Platform, Anal. Chem. 90 (2018) 4288-4292.
DOI: 10.1021/acs.analchem.7b03661
Google Scholar
[55]
P. Cardiano, O. Giuffrè, A. Napoli, S. Sammartano, Potentiometric, 1H NMR and ESI-MS investigation on dimethyltin(iv) cation-mercaptocarboxylate interaction in aqueous solution, New J. Chem. 33 (2009) 2286-2295.
DOI: 10.1039/b908114c
Google Scholar
[56]
S. Materazzi, J. Finamore, R. Risoluti, A. Napoli, Biomimetic complexes of Co (II), Cu (II) and Ni (II) with 2-aminomethylbenzimidazole. EGA-MS characterization of the thermally induced decomposition, Microchem. J. 115 (2014) 27-31.
DOI: 10.1016/j.microc.2014.02.006
Google Scholar
[57]
A. Napoli, D. Aiello, L. Di Donna, H. Prendushi, G. Sindona, Exploitation of endogenous protease activity in raw mastitic milk by MALDI-TOF/TOF, Ana. Chem. 79 (2007) 5941-5948.
DOI: 10.1021/ac0704863
Google Scholar
[58]
E. Furia, D. Aiello, L. Di Donna, F. Mazzotti, A. Tagarelli, H. Thangavel, A. Napoli, G. Sindona, Mass spectrometry and potentiometry studies of Pb(II)-, Cd(II)- and Zn(II)-cystine complexes, Dalton Trans. 43 (2014) 1055-1062.
DOI: 10.1039/c3dt52255e
Google Scholar
[59]
A. Napoli, D. Aiello, L.D. Donna, A. Sajjad, E. Perri, G. Sindona, Profiling of hydrophilic proteins from Olea europaea olive pollen by MALDI TOF mass spectrometry, Ana. Chem. 78 (2006) 3434-3443.
DOI: 10.1021/ac0600508
Google Scholar
[60]
C.E. Reddy, L. Albanito, P. De Marco, D. Aiello, M. Maggiolini, A. Napoli, A.M. Musti, Multisite phosphorylation of c-Jun at threonine 91/93/95 triggers the onset of c-Jun pro-apoptotic activity in cerebellar granule neurons, Cell Death Dis. 4 (2013) e852.
DOI: 10.1038/cddis.2013.381
Google Scholar
[61]
F. Mazzotti, H. Benabdelkamel, L.D. Donna, C.M. Athanassopoulos, A. Napoli, G. Sindona, Light and heavy dansyl reporter groups in food chemistry: Amino acid assay in beverages, J Mass Spectrom 47 (2012) 932-939.
DOI: 10.1002/jms.3005
Google Scholar
[62]
S. Materazzi, A. Napoli, R. Risoluti, J. Finamore, S. D'Arienzo, Characterization of thermally induced mechanisms by mass spectrometry-evolved gas analysis (EGA-MS): A study of divalent cobalt and zinc biomimetic complexes with N-heterocyclic dicarboxylic ligands, Int J Mass Spectrom 365-366 (2014) 372-376.
DOI: 10.1016/j.ijms.2014.03.013
Google Scholar
[63]
S. Materazzi, R. Risoluti, S. Pinci, F.S. Romolo, New insights in forensic chemistry: NIR/Chemometrics analysis of toners for questioned documents examination, Talanta 174 (2017) 673-678.
DOI: 10.1016/j.talanta.2017.06.044
Google Scholar
[64]
S. Materazzi, A. Gregori, L. Ripani, A. Apriceno, R. Risoluti, Cocaine profiling: Implementation of a predictive model by ATR-FTIR coupled with chemometrics in forensic chemistry, Talanta 166 (2017) 328-335.
DOI: 10.1016/j.talanta.2017.01.045
Google Scholar