Evaluation of Novel Strategies for Carbon Nanotube Functionalization by TGA/Chemometrics

Article Preview

Abstract:

Innovative preparation strategies for nanomaterial functionalization were proposed to provide novel tool to be used as drug delivery vectors for biomedical applications. In particular, three different carbon nanotubes were considered in this study such as the very small CNTs, the carboxylated CNTs (CNT-COOH) and the buckypapers and two polymers were used to study the functionalization. Different preparation procedures were investigated by thermogravimetric analysis (TGA), including the selection of the most performing polymer to be linked to the nanomaterial between PEI and PAMAM, the percentage of the polymer and the time of suspension. To simultaneously evaluate all these variables, an experimental design was planned and the recorded data were processed by chemometrics to identify the preparing procedure providing new nanomaterials able to conjugate microRNAs and to transfect efficiently endothelial cells.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-66

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Zhang, L. Meng, Q. Lu, Z. Fei, P.J. Dyson, Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes, Biomaterials 30 (2009) 6041–6047.

DOI: 10.1016/j.biomaterials.2009.07.025

Google Scholar

[2] F. Jahouh, R. Saksena, D. Aiello, A. Napoli, G. Sindona, P. Kováč, J.H. Banoub, Glycation sites in neoglycoglycoconjugates from the terminal monosaccharide antigen of the O-PS of Vibrio cholerae O1, serotype Ogawa, and BSA revealed by matrix-assisted laser desorption-ionization tandem mass spectrometry, J Mass Spectrom 45 (2010) 1148-1159.

DOI: 10.1002/jms.1796

Google Scholar

[3] A. Napoli, C.M. Athanassopoulos, P. Moschidis, D. Aiello, L. Di Donna, F. Mazzotti, G. Sindona, Solid phase isobaric mass tag reagent for simultaneous protein identification and assay, Anal. Chem. 82 (2010) 5552-5560.

DOI: 10.1021/ac1004212

Google Scholar

[4] R.B. Li, R.A. Wu, L.A. Zhao, Z.Y. Hu, S.J. Guo, X.L. Pan, H.F. Zou, Folate and iron difunctionalized multiwall carbon nanotubes as dual-targeted drug nanocarrier to cancer cells, Carbon 49 (2011) 1797–1805.

DOI: 10.1016/j.carbon.2011.01.003

Google Scholar

[5] D. Aiello, C. Siciliano, F. Mazzotti, L. Di Donna, C.M. Athanassopoulos, A. Napoli, A rapid MALDI MS/MS based method for assessing saffron (Crocus sativus L.) adulteration, Food Chem. 307 (2020) 125527.

DOI: 10.1016/j.foodchem.2019.125527

Google Scholar

[6] D. Chillè, D. Aiello, G.I. Grasso, O. Giuffrè, A. Napoli, C. Sgarlata, C. Foti, Complexation of As(III) by phosphonate ligands in aqueous fluids: Thermodynamic behavior, chemical binding forms and sequestering abilities, J Environ Sci (China) 94 (2020) 100-110.

DOI: 10.1016/j.jes.2020.03.056

Google Scholar

[7] W. Wu, R.T. Li, X.C. Bian, Z.S. Zhu, D. Ding, X.L. Li, Z.J. Jia, X.Q. Jiang, Y.Q. Hu, Covalently combining carbon nanotubes with anticancer agent: Preparation and antitumor activity, ACS Nano 3 (2009) 2740–2750.

DOI: 10.1021/nn9005686

Google Scholar

[8] S. Materazzi, S. Vecchio, L.W. Wo, S. De Angelis Curtis, TG-MS and TG-FTIR studies of imidazole-substituted coordination compounds: Co(II) and Ni(II)-complexes of bis(1-methylimidazol-2-yl)ketone Thermochimica Acta, 543 (2012) 183-187.

DOI: 10.1016/j.tca.2012.05.013

Google Scholar

[9] D.Aiello, P. Cardiano, R.M. Cigala, P. Gans, F. Giacobello, O. Giuffrè, A. Napoli, S. Sammartano, Sequestering Ability of Oligophosphate Ligands toward Al3+ in Aqueous Solution, J. Chem. Eng. Data 62 (2017) 3981-3990.

DOI: 10.1021/acs.jced.7b00685

Google Scholar

[10] H. Ali-Boucetta, K.T. Al-Jamal, D. McCarthy, M. Prato, A. Bianco, K. Kostarelos, Multiwalled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics, Chem. Commun. 4 (2008) 459–461.

DOI: 10.1039/b712350g

Google Scholar

[11] D. Aiello, F. Casadonte, R. Terracciano, R. Damiano, R. Savino, G. Sindona, A. Napoli, Targeted proteomic approach in prostatic tissue: A panel of potential biomarkers for cancer detection, Oncoscience 3 (2016) 220-241.

DOI: 10.18632/oncoscience.313

Google Scholar

[12] N.M. Dinan, F. Atyabi, M.R. Rouini, M. Amini, A.A. Golabchifar, R. Dinarvand, Doxorubicin loaded folate-targeted carbon nanotubes: Preparation, cellular internalization, in vitro cytotoxicity and disposition kinetic study in the isolated perfused rat liver, Mater. Sci. Eng. C 39 (2014) 47–55.

DOI: 10.1016/j.msec.2014.01.055

Google Scholar

[13] A. Ruggiero, C.H. Villa, J.P. Holland, S.R. Sprinkle, C. May, J.S. Lewis, D.A. Scheinberg, M.R. McDevitt, Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes, Int. J. Nanomed. 5 (2010) 783–802.

DOI: 10.2147/ijn.s13300

Google Scholar

[14] M. Ouyang, E.E. White, H. Ren, Q. Guo, I. Zhang, H. Gao, S. Yanyan, X. Chen, Y. Weng, A. Da Fonseca, S. Shah, E.R. Manuel, L. Zhang, S.L. Vonderfecht, D. Alizadeh, J.M. Berlin, B. Badie, Metronomic doses of temozolomide enhance the efficacy of carbon nanotube CPG immunotherapy in an invasive glioma model, PLoS ONE 11 (2016) e0148139.

DOI: 10.1371/journal.pone.0148139

Google Scholar

[15] T.R. Fadel, F.A. Sharp, N. Vudattu, R. Ragheb, J. Garyu, D. Kim, E. Hong, N. Li, G.L. Haller, L.D. Pfefferle, S. Justesen, K.C. Herold, T.M. Fahmy, A carbon nanotube-polymer composite for T-cell therapy, Nat. Nanotechnol. 9 (2014) 639–647.

DOI: 10.1038/nnano.2014.154

Google Scholar

[16] D. Pantarotto, R. Singh, D. McCarthy, M. Erhardt, J.P. Briand, M. Prato, K. Kostarelos, A. Bianco, Functionalized carbon nanotubes for plasmid DNA gene delivery, Angew. Chem. Int. Ed. Engl. 43 (2004) 5242–5246.

DOI: 10.1002/anie.200460437

Google Scholar

[17] D. Aiello, E. Furia, C. Siciliano, D. Bongiorno, A. Napoli, Study of the coordination of ortho-tyrosine and trans-4-hydroxyproline with aluminum(III) and iron(III), J. Mol. Liq. 269 (2018) 387-397.

DOI: 10.1016/j.molliq.2018.08.074

Google Scholar

[18] M. Ahmed, X. Jiang, Z. Deng, R. Narain, Cationic glyco-functionalized single-walled carbon nanotubes as efficient gene delivery vehicles, Bioconjug. Chem. 20 (2009) 2017–(2022).

DOI: 10.1021/bc900229v

Google Scholar

[19] R. Krajcik, A. Jung, A. Hirsch, W. Neuhuber, O. Zolk, Functionalization of carbon nanotubes enables non-covalent binding and intracellular delivery of small interfering RNA for efficient knockdown of genes, Biochem. Biophys. Res. Commun. 369 (2008) 595–602.

DOI: 10.1016/j.bbrc.2008.02.072

Google Scholar

[20] D. Aiello, A. Giambona, F. Leto, C. Passarello, G. Damiani, A. Maggio, C. Siciliano, A. Napoli, Human coelomic fluid investigation: A MS-based analytical approach to prenatal screening, Sci. Rep. 8 (2018) 10973.

DOI: 10.1038/s41598-018-29384-9

Google Scholar

[21] Z. Zhang, X. Yang, Y. Zhang, B. Zeng, S. Wang, T. Zhu, R.B.S. Roden, Y. Chen, R. Yang, Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth, Clin. Cancer Res. 12 (2006) 4933–4939.

DOI: 10.1158/1078-0432.ccr-05-2831

Google Scholar

[22] M.A. Navarra, S. Materazzi, S. Panero, B. Scrosati, PVdF-based membranes for DMFC applications Journal of the Electrochemical Society, 150 (2003) A1528-A1532.

DOI: 10.1149/1.1615607

Google Scholar

[23] M.G. Sabbieti, L. Marchetti, M.G. Gabrielli, M. Manghi, S. Materazzi, G. Menghi, L.G. Raisz, M.M. Hurley, Prostaglandins differently regulate FGF-2 and FGF receptor expression and induce nuclear translocation in osteoblasts via MAPK kinase, Cell and Tissue Res. 319 (2005) 267-278.

DOI: 10.1007/s00441-004-0981-8

Google Scholar

[24] M.G. Sabbieti, D. Agas, G. Santoni, S. Materazzi, G. Menghi, L. Marchetti, Involvement of p.53 in phthalate effects on mouse and rat osteoblasts, J. Cell. Biochem. 107 (2009) 316-327.

DOI: 10.1002/jcb.22127

Google Scholar

[25] D. Agas, L. Marchetti, G. Menghi, S. Materazzi, G. Materazzi, M. Capacchietti, M.M. Hurley, M.G. Sabbieti, Anti-apoptotic Bcl-2 enhancing requires FGF-2/FGF receptor 1 binding in mouse osteoblasts, J. Cell. Physiol. 214 (2008) 145-152.

DOI: 10.1002/jcp.21170

Google Scholar

[26] A. Gentili, F. Caretti, G. D'Ascenzo, L. Mainero Rocca, S. Marchese, S. Materazzi, D. Perret, Simultaneous determination of trichothecenes A, B, and D in maize food products by LC-MS-MS, Chromatographia 66 (2007) 669-676.

DOI: 10.1365/s10337-007-0411-7

Google Scholar

[27] V. Migliorati, P. Ballirano, L. Gontrani, S. Materazzi, F. Ceccacci, R. Caminiti, A combined theoretical and experimental study of solid octyl and decylammonium chlorides and of their aqueous solutions, J. Phys. Chem. B 117 (2013) 7806-7818.

DOI: 10.1021/jp403103w

Google Scholar

[28] D. Aiello, S. Materazzi, R. Risoluti, H. Thangavel, L. Di Donna, F. Mazzotti, F. Casadonte, C. Siciliano, G. Sindona, A. Napoli, A major allergen in rainbow trout (Oncorhynchus mykiss): complete sequences of parvalbumin by MALDI tandem mass spectrometry, Mol. BioSyst. 11 (2015) 2373-2382.

DOI: 10.1039/c5mb00148j

Google Scholar

[29] A. Napoli, D. Aiello, G. Aiello, M.S. Cappello, L. Di Donna, F. Mazzotti, S. Materazzi, M. Fiorillo, G. Sindona, Mass spectrometry-based proteomic approach in oenococcus oeni enological starter, J. Proteome Res. 13 (2014) 2856-2866.

DOI: 10.1021/pr4012798

Google Scholar

[30] C. Perrino, E. Marconi, L. Tofful, C. Farao, S. Materazzi, S. Canepari, Thermal stability of inorganic and organic compounds in atmospheric particulate matter, Atmospheric Environ. 54 (2012) 36-43.

DOI: 10.1016/j.atmosenv.2012.02.078

Google Scholar

[31] M. Sergi, A. Gentili, D. Perret, S. Marchese, S. Materazzi, R. Curini, MSPD extraction of sulphonamides from meat followed by LC tandem MS determination, Chromatographia 65 (2007) 757-761.

DOI: 10.1365/s10337-007-0245-3

Google Scholar

[32] L. Salvatore, N. Gallo, D. Aiello, P. Lunetti, A. Barca, L. Blasi, M. Madaghiele, S. Bettini, G. Giancane, M. Hasan, V. Borovkov, M.L. Natali, L. Campa, L. Valli, L. Capobianco, A. Napoli, A. Sannino, An insight on type I collagen from horse tendon for the manufacture of implantable device, Int. J. Biol. Macromol. 154 (2020) 291-306.

DOI: 10.1016/j.ijbiomac.2020.03.082

Google Scholar

[33] D. Aiello, C. Siciliano, F. Mazzotti, L.D. Donna, R. Risoluti, A. Napoli, Protein extraction, enrichment and MALDI MS and MS/MS analysis from bitter orange leaves (citrus aurantium), Molecules 25 (2020) 1485.

DOI: 10.3390/molecules25071485

Google Scholar

[34] S. Imbrogno, D. Aiello, M. Filice, S. Leo, R. Mazza, M.C. Cerra, A. Napoli, MS-based proteomic analysis of cardiac response to hypoxia in the goldfish (Carassius auratus), Sci. Rep. 9 (2019) 18953.

DOI: 10.1038/s41598-019-55497-w

Google Scholar

[35] G. Falcone, C. Foti, A. Gianguzza, O. Giuffrè, A. Napoli, A. Pettignano, D. Piazzese, Sequestering ability of some chelating agents towards methylmercury (II), Anal. Bioanal. Chem. 405 (2013) 881-893.

DOI: 10.1007/s00216-012-6336-5

Google Scholar

[36] K. Kurdziel, T. Głowiak, S. Materazzi, J. Jezierska, Crystal structure and physico-chemical properties of cobalt(II) and manganese(II) complexes with imidazole-4-acetate anion Polyhedron, 22 (2003) 3123-31-28.

DOI: 10.1016/j.poly.2003.07.004

Google Scholar

[37] N.K. Mehra, A.K. Verma, P.R. Mishra, N.K. Jain, The cancer targeting potential of D-𝛼-tocopheryl polyethylene glycol 1000 succinate tethered multi walled carbon nanotubes, Biomaterials 35 (2014) 4573–4588.

DOI: 10.1016/j.biomaterials.2014.02.022

Google Scholar

[38] L. Marchetti, M.G. Sabbieti, M. Menghi, S. Materazzi, M.M Hurley, G. Menghi, Effects of phthalate esters on actin cytoskeleton of Py1a rat osteoblasts Histology and Histopathology, 17 (2002) 1061-1066.

DOI: 10.1076/ejom.39.3.155.4672

Google Scholar

[39] S. Vecchio, S. Materazzi, L.W. Wo, S. De Angelis Curtis, Thermoanalytical study of imidazole-substituted coordination compounds: Cu(II)- and Zn(II)-complexes of bis(1-methylimidazol-2-yl)ketone, Thermochim. Acta 568 (2013) 31-37.

DOI: 10.1016/j.tca.2013.06.016

Google Scholar

[40] G. M. Neelgund, A. Oki, Z. Luo, Antimicrobial activity of CdS and Ag2S quantum dots immobilized on Poly(amidoamine) grafted carbon nanotubes, Colloids Surf. B 100 (2012) 215–221.

DOI: 10.1016/j.colsurfb.2012.05.012

Google Scholar

[41] D. Aiello, C. Siciliano, F. Mazzotti, L. Di Donna, C.M. Athanassopoulos, A. Napoli, Molecular species fingerprinting and quantitative analysis of saffron (Crocus sativus L.) for quality control by MALDI mass spectrometry, RSC Adv. 8 (2018) 36104-36113.

DOI: 10.1039/c8ra07484d

Google Scholar

[42] S. Materazzi, S. De Angelis Curtis, S. Vecchio Ciprioti, R. Risoluti, J. Finamore, Thermogravimetric characterization of dark chocolate, J. Therm. Anal. Calorim. 116 (2014) 93–98.

DOI: 10.1007/s10973-013-3495-3

Google Scholar

[43] S. Materazzi, R. Risoluti, A. Napoli, EGA-MS study to characterize the thermally induced decomposition of Co(II), Ni(II), Cu(II) and Zn(II) complexes with 1,1-diaminobutane- Schiff base, Thermochim. Acta 606 (2015) 90–94.

DOI: 10.1016/j.tca.2015.03.009

Google Scholar

[44] S. De Angelis Curtis, K. Kurdziel, S. Materazzi, S. Vecchio, Crystal structure and thermoanalytical study of a manganese (II) complex with 1-allylimidazole, J. Therm. Anal. Calorim. 92 (2008) 109-114.

DOI: 10.1007/s10973-007-8747-7

Google Scholar

[45] S. Materazzi, S. Vecchio, L.W. Wo, S. De Angelis Curtis, TG-MS and TG-FTIR studies of imidazole-substituted coordination compounds: Co(II) and Ni(II)-complexes of bis(1-methylimidazol-2-yl)ketone, Thermochim. Acta 543 (2012) 183-187.

DOI: 10.1016/j.tca.2012.05.013

Google Scholar

[46] R. Risoluti, M.A. Fabiano, G. Gullifa, S. Vecchio Ciprioti, S. Materazzi, FTIR-evolved gas analysis in recent thermoanalytical investigations, Appl. Spectrosc. Rev. 52 (2017), 39-72.

DOI: 10.1080/05704928.2016.1207658

Google Scholar

[47] R. Risoluti, D. Piazzese, A. Napoli, S. Materazzi, Study of [2-(2'-pyridyl)imidazole] complexes to confirm two main characteristic thermoanalytical behaviors of transition metal complexes based on imidazole derivatives, J. Anal. Appl. Pyrolysis 117 (2016) 82-87.

DOI: 10.1016/j.jaap.2015.11.018

Google Scholar

[48] R. Risoluti, S. Materazzi, F. Sorrentino, L. Maffei, P. Caprari, Thermogravimetric analysis coupled with chemometrics as a powerful predictive tool for β-thalassemia screening, Talanta 159 (2016) 425-432.

DOI: 10.1016/j.talanta.2016.06.037

Google Scholar

[49] F. Crea, G. Falcone, C. Foti, O. Giuffrè, S. Materazzi, Thermodynamic data for Pb2+ and Zn2+ sequestration by biologically important S-donor ligands, at different temperatures and ionic strengths, New J. Chem. 38 (2014) 3973-3983.

DOI: 10.1039/c4nj00830h

Google Scholar

[50] C. Bretti, F. Crea, C. De Stefano, C. Foti, S. Materazzi, G. Vianelli, Thermodynamic properties of dopamine in aqueous solution. Acid-base properties, distribution, and activity coefficients in NaCl aqueous solutions at different ionic strengths and temperatures, Chem. Eng. J. 58 (2013) 2835-2847.

DOI: 10.1021/je400568u

Google Scholar

[51] S. Materazzi, S. Vecchio, L.W. Wo, S. De Angelis Curtis, Thermoanalytical studies of imidazole-substituted coordination compounds: Mn(II)-complexes of bis(1-methylimidazol-2-yl)ketone, J. Therm. Anal. Calorim. 103 (2011) 59-64.

DOI: 10.1007/s10973-010-1137-6

Google Scholar

[52] S. Materazzi, R. Risoluti, Evolved gas analysis by mass spectrometry, Appl. Spectrosc. Rev. 49 (2014) 635-665.

DOI: 10.1080/05704928.2014.887021

Google Scholar

[53] S. Materazzi, G. Peluso, L. Ripani, R. Risoluti, High-throughput prediction of AKB48 in emerging illicit products by NIR spectroscopy and chemometrics, Microchem. J. 134 (2017) 277-283.

DOI: 10.1016/j.microc.2017.06.014

Google Scholar

[54] R. Risoluti, A. Gregori, S. Schiavone, S. Materazzi, click and Screen, Technology for the Detection of Explosives on Human Hands by a Portable MicroNIR-Chemometrics Platform, Anal. Chem. 90 (2018) 4288-4292.

DOI: 10.1021/acs.analchem.7b03661

Google Scholar

[55] P. Cardiano, O. Giuffrè, A. Napoli, S. Sammartano, Potentiometric, 1H NMR and ESI-MS investigation on dimethyltin(iv) cation-mercaptocarboxylate interaction in aqueous solution, New J. Chem. 33 (2009) 2286-2295.

DOI: 10.1039/b908114c

Google Scholar

[56] S. Materazzi, J. Finamore, R. Risoluti, A. Napoli, Biomimetic complexes of Co (II), Cu (II) and Ni (II) with 2-aminomethylbenzimidazole. EGA-MS characterization of the thermally induced decomposition, Microchem. J. 115 (2014) 27-31.

DOI: 10.1016/j.microc.2014.02.006

Google Scholar

[57] A. Napoli, D. Aiello, L. Di Donna, H. Prendushi, G. Sindona, Exploitation of endogenous protease activity in raw mastitic milk by MALDI-TOF/TOF, Ana. Chem. 79 (2007) 5941-5948.

DOI: 10.1021/ac0704863

Google Scholar

[58] E. Furia, D. Aiello, L. Di Donna, F. Mazzotti, A. Tagarelli, H. Thangavel, A. Napoli, G. Sindona, Mass spectrometry and potentiometry studies of Pb(II)-, Cd(II)- and Zn(II)-cystine complexes, Dalton Trans. 43 (2014) 1055-1062.

DOI: 10.1039/c3dt52255e

Google Scholar

[59] A. Napoli, D. Aiello, L.D. Donna, A. Sajjad, E. Perri, G. Sindona, Profiling of hydrophilic proteins from Olea europaea olive pollen by MALDI TOF mass spectrometry, Ana. Chem. 78 (2006) 3434-3443.

DOI: 10.1021/ac0600508

Google Scholar

[60] C.E. Reddy, L. Albanito, P. De Marco, D. Aiello, M. Maggiolini, A. Napoli, A.M. Musti, Multisite phosphorylation of c-Jun at threonine 91/93/95 triggers the onset of c-Jun pro-apoptotic activity in cerebellar granule neurons, Cell Death Dis. 4 (2013) e852.

DOI: 10.1038/cddis.2013.381

Google Scholar

[61] F. Mazzotti, H. Benabdelkamel, L.D. Donna, C.M. Athanassopoulos, A. Napoli, G. Sindona, Light and heavy dansyl reporter groups in food chemistry: Amino acid assay in beverages, J Mass Spectrom 47 (2012) 932-939.

DOI: 10.1002/jms.3005

Google Scholar

[62] S. Materazzi, A. Napoli, R. Risoluti, J. Finamore, S. D'Arienzo, Characterization of thermally induced mechanisms by mass spectrometry-evolved gas analysis (EGA-MS): A study of divalent cobalt and zinc biomimetic complexes with N-heterocyclic dicarboxylic ligands, Int J Mass Spectrom 365-366 (2014) 372-376.

DOI: 10.1016/j.ijms.2014.03.013

Google Scholar

[63] S. Materazzi, R. Risoluti, S. Pinci, F.S. Romolo, New insights in forensic chemistry: NIR/Chemometrics analysis of toners for questioned documents examination, Talanta 174 (2017) 673-678.

DOI: 10.1016/j.talanta.2017.06.044

Google Scholar

[64] S. Materazzi, A. Gregori, L. Ripani, A. Apriceno, R. Risoluti, Cocaine profiling: Implementation of a predictive model by ATR-FTIR coupled with chemometrics in forensic chemistry, Talanta 166 (2017) 328-335.

DOI: 10.1016/j.talanta.2017.01.045

Google Scholar