[1]
J. Kang, J. Li, S.-S. Li, J.-B. Xia, L.-W. Wang, Electronic Structural Moiré Pattern Effects on MoS2/MoSe2 2D Heterostructures, Nano Lett. 13, 5485–5490, (2013).
DOI: 10.1021/nl4030648
Google Scholar
[2]
X. Li, S. Wu, S. Zhou, Z. Zhu, Structural and electronic properties of germanene/ MoS2 monolayer and silicene/MoS2 monolayer superlattices, Nanoscale Res. Lett. 9, 1–9, (2014).
DOI: 10.1186/1556-276x-9-110
Google Scholar
[3]
X. Wang, L. Huang, Y. Peng, N. Huo, K. Wu, C. Xia, Z. Wei, S. Tongay, J. Li, Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p–n heterojunctions, Nano Res. 9, 507–516, (2016).
DOI: 10.1007/s12274-015-0932-6
Google Scholar
[4]
J. Su, L. ping Feng, H. xi Pan, H. cheng Lu, Z. tang Liu, Modulating the electronic properties of monolayer MoS2through heterostructure with monolayer gray arsenic, Mater. Des. 96, 257–262, (2016).
DOI: 10.1016/j.matdes.2016.02.017
Google Scholar
[5]
Y.H. Huang, C.C. Peng, R.S. Chen, Y.S. Huang, C.H. Ho, Transport properties in semiconducting NbS 2 nanoflakes, Appl. Phys. Lett. 105, 093106, (2014).
DOI: 10.1063/1.4894857
Google Scholar
[6]
K.S. Novoselov, A.K. Geim, S. V. Morozov, D.A. Jiang, Y.Y. Zhang, S. V. Dubonos, A.A. Firsov, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science (80-. ). 306, 666–669, (2004).
DOI: 10.1126/science.1102896
Google Scholar
[7]
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7 (2012) 699–712.
DOI: 10.1038/nnano.2012.193
Google Scholar
[8]
N. Zibouche, P. Philipsen, A. Kuc, T. Heine, Transition-metal dichalcogenide bilayers : Switching materials for spintronic and valleytronic applications, Phys. Rev. 125440 (2014) 1–6.
DOI: 10.1103/physrevb.90.125440
Google Scholar
[9]
G.-H. Lee, Y.-J. Yu, X. Cui, N. Petrone, C.-H. Lee, M.S. Choi, W.J. Yoo, D.-Y. Lee, C. Lee, K. Watanabe, T. Taniguchi, C. Nuckolls, P. Kim, J. Hone, Flexible and Transparent MoS 2 Field- E ff ect Transistors on Hexagonal Boron, ACS Nano. 7 (2013) 7931–7936.
DOI: 10.1021/nn402954e
Google Scholar
[10]
H. Fang, S. Chuang, T.C. Chang, K. Takei, T. Takahashi, A. Javey, High Performance Single Layered WSe p- FETs with Chemically Doped Contacts, Nano Lett. (2012).
DOI: 10.1021/nl301702r
Google Scholar
[11]
B. Radisavljevic, M.B. Whitwick, A. Kis, Integrated Circuits and Logic Operations Based on Single-Layer MoS 2, ACS Nano. (2011).
DOI: 10.1021/nn203715c
Google Scholar
[12]
Y. Zhao, J. Qiao, P. Yu, Z. Hu, Z. Lin, S.P. Lau, Z. Liu, W. Ji, Y. Chai, Extraordinarily Strong Interlayer Interaction in 2D Layered PtS2, Adv. Mater. 28 (2016) 2399–2407.
DOI: 10.1002/adma.201504572
Google Scholar
[13]
H.L. Zhuang, R.G. Hennig, Computational search for single-layer transition-metal dichalcogenide photocatalysts, J. Phys. Chem. C. 117 (2013) 20440–20445.
DOI: 10.1021/jp405808a
Google Scholar
[14]
Y. Wang, L. Li, W. Yao, S. Song, J.T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y.Q. Wang, E. Wang, Y. Shao, Y.Y. Zhang, H.T. Yang, E.F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S.J. Pennycook, S.T. Pantelides, H.J. Gao, Monolayer PtSe, a New Semiconducting Transition-Metal-Dichalcogenide, Epitaxially Grown by Direct Selenization of Pt, Nano Lett. 15 (2015) 4013–4018.
DOI: 10.1021/acs.nanolett.5b00964
Google Scholar
[15]
Z. Huang, W. Zhang, W. Zhang, Computational search for two-dimensional MX2 semiconductors with possible high electron mobility at room temperature, Materials (Basel). 9 (2016) 1–13.
DOI: 10.3390/ma9090716
Google Scholar
[16]
L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9 (2014) 372–377.
DOI: 10.1038/nnano.2014.35
Google Scholar
[17]
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865–3868.
DOI: 10.1103/physrevlett.77.3865
Google Scholar
[18]
S. Ahmad, Strained noble metal di chalcogenides PtX2(X = S, Se) mono-layer: Ab initio study of electronic and lattice dynamic properties, Phys. E Low-Dimensional Syst. Nanostructures. 95 (2018) 139–143.
DOI: 10.1016/j.physe.2017.09.016
Google Scholar
[19]
M. Sajjad, N. Singh, A.U. Schwingenschlög, Strongly bound excitons in monolayer PtS 2 and PtSe 2, Appl. Phys. Lett. 043101 (2018).
DOI: 10.1063/1.5010881
Google Scholar
[20]
Z. Guan, S. Ni, S. Hu, Band gap opening of graphene by forming a graphene/PtSe2van der Waals heterojunction, RSC Adv. 7 (2017) 45393–45399.
DOI: 10.1039/c7ra06865d
Google Scholar
[21]
S.S. Abed Al- Abbas, M.K. Muhsin, H.R. Jappor, Tunable optical and electronic properties of gallium telluride monolayer for photovoltaic absorbers and ultraviolet detectors, Chem. Phys. Lett. 713 (2018) 46–51.
DOI: 10.1016/j.cplett.2018.10.020
Google Scholar
[22]
C. Xia, T. Wang, P. Song, J. Du, Z. Wei, L. Fang, J. Li, Elastic, electronic and optical properties of the two-dimensional PtX2 (X = S, Se, and Te) monolayer, Appl. Surf. Sci. 435 (2017) 476–482.
DOI: 10.1016/j.apsusc.2017.11.106
Google Scholar
[23]
S. Liu, Z. Liu, Hybridization induced metallic and magnetic edge states in noble transition-metal-dichalcogenides of PtX2(X = S, Se) nanoribbons, Phys. Chem. Chem. Phys. 20 (2018) 21441–21446.
DOI: 10.1039/c8cp03640c
Google Scholar
[24]
S. Sabah, A.A.- Abbas, M. Kadhim, H. Rahman, Tunable optical and electronic properties of gallium telluride monolayer for photovoltaic absorbers and ultraviolet detectors, Chem. Phys. Lett. 713 (2018) 46–51.
DOI: 10.1016/j.cplett.2018.10.020
Google Scholar
[25]
S. Choi, Z. Shaolin, W. Yang, Layer-number-dependent work function of MoS2 nanoflakes, J. Korean Phys. Soc. 64 (2014) 1550–1555.
DOI: 10.3938/jkps.64.1550
Google Scholar
[26]
S.R.L.E.B.K.S.K.P.K. Young-Jun Yu Yue Zhao, Y.-J. Yu, Y. Zhao, S. Ryu, L.E. Brus, K.S. Kim, P. Kim, Tuning the graphene work function by electric field effect., Nano Lett. 9 (2009) 3430–4.
DOI: 10.1021/nl901572a
Google Scholar
[27]
Hasan I. Hussein, Auday H. Shaban, Iman H. Khudayer, Enhancements of p-Si/CdO Thin Films Solar Cells with doping (Sb, Sn, Se), Energy Procedia, 157 (2019):150-157.
DOI: 10.1016/j.egypro.2018.11.175
Google Scholar