Structural, Electronic and Optical Properties of Transition Metal Dichalcogenides Layer PtS2 (Se2) for Nano Devices Applications

Article Preview

Abstract:

Monolayer materials are promising material in applications, such as possess some layers with sturdy in-plane bonds. These materials represents two-dimensional (2D) materials which are possess a vertical weak Van der Waals (VdW) interactions sandwiched among the neighboring sheets. These structures of layers offer the chance to be split to free atomic layers. So new class material with two dimensional transition metal dichalcogenides which includes PtS2 (Se2) have unique geometric structural, electronic and optical properties are studied. It has attracted the attention of many researchers for its extensive applications in (catalysis, sensing, electronics, and optoelectronics devices). It has been disclosed from the outcomes that these monolayers are dynamically stable according to the phonon calculations. Also, the direct band gaps located at K point for MoS2 and MoSe2 are 1.67 eV and 1.484 eV and for PtS2 and PtSe2 located between Γ-M points are 1.887 and 1.66, respectively. Also, the PtS2 have indirect band gap of about 1.775 eV situated at KΓ- ΓM and for PtSe2 is 1.401 eV at Γ- ΓM path. The results show that the maximum absorption coefficients are between 14×104 and 16.4×104 cm-1 for PtS2 and MoSe2, respectively. Besides, the maximum conductivities are between 2.09×101 and 3.65×1015 1/s for PtSe2 and MoS2, and the major values Likewise, the optical properties determined over rang energy 0.30 eV. The work function is equal 6.197eV for PtS2 and 5.628eV for PtSe2. It has been shown by studying photon dispersion of both monolayers that it is stable because it does not contain imaginary frequencies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

48-56

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Kang, J. Li, S.-S. Li, J.-B. Xia, L.-W. Wang, Electronic Structural Moiré Pattern Effects on MoS2/MoSe2 2D Heterostructures, Nano Lett. 13, 5485–5490, (2013).

DOI: 10.1021/nl4030648

Google Scholar

[2] X. Li, S. Wu, S. Zhou, Z. Zhu, Structural and electronic properties of germanene/ MoS2 monolayer and silicene/MoS2 monolayer superlattices, Nanoscale Res. Lett. 9, 1–9, (2014).

DOI: 10.1186/1556-276x-9-110

Google Scholar

[3] X. Wang, L. Huang, Y. Peng, N. Huo, K. Wu, C. Xia, Z. Wei, S. Tongay, J. Li, Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p–n heterojunctions, Nano Res. 9, 507–516, (2016).

DOI: 10.1007/s12274-015-0932-6

Google Scholar

[4] J. Su, L. ping Feng, H. xi Pan, H. cheng Lu, Z. tang Liu, Modulating the electronic properties of monolayer MoS2through heterostructure with monolayer gray arsenic, Mater. Des. 96, 257–262, (2016).

DOI: 10.1016/j.matdes.2016.02.017

Google Scholar

[5] Y.H. Huang, C.C. Peng, R.S. Chen, Y.S. Huang, C.H. Ho, Transport properties in semiconducting NbS 2 nanoflakes, Appl. Phys. Lett. 105, 093106, (2014).

DOI: 10.1063/1.4894857

Google Scholar

[6] K.S. Novoselov, A.K. Geim, S. V. Morozov, D.A. Jiang, Y.Y. Zhang, S. V. Dubonos, A.A. Firsov, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science (80-. ). 306, 666–669, (2004).

DOI: 10.1126/science.1102896

Google Scholar

[7] Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7 (2012) 699–712.

DOI: 10.1038/nnano.2012.193

Google Scholar

[8] N. Zibouche, P. Philipsen, A. Kuc, T. Heine, Transition-metal dichalcogenide bilayers : Switching materials for spintronic and valleytronic applications, Phys. Rev. 125440 (2014) 1–6.

DOI: 10.1103/physrevb.90.125440

Google Scholar

[9] G.-H. Lee, Y.-J. Yu, X. Cui, N. Petrone, C.-H. Lee, M.S. Choi, W.J. Yoo, D.-Y. Lee, C. Lee, K. Watanabe, T. Taniguchi, C. Nuckolls, P. Kim, J. Hone, Flexible and Transparent MoS 2 Field- E ff ect Transistors on Hexagonal Boron, ACS Nano. 7 (2013) 7931–7936.

DOI: 10.1021/nn402954e

Google Scholar

[10] H. Fang, S. Chuang, T.C. Chang, K. Takei, T. Takahashi, A. Javey, High Performance Single Layered WSe p- FETs with Chemically Doped Contacts, Nano Lett. (2012).

DOI: 10.1021/nl301702r

Google Scholar

[11] B. Radisavljevic, M.B. Whitwick, A. Kis, Integrated Circuits and Logic Operations Based on Single-Layer MoS 2, ACS Nano. (2011).

DOI: 10.1021/nn203715c

Google Scholar

[12] Y. Zhao, J. Qiao, P. Yu, Z. Hu, Z. Lin, S.P. Lau, Z. Liu, W. Ji, Y. Chai, Extraordinarily Strong Interlayer Interaction in 2D Layered PtS2, Adv. Mater. 28 (2016) 2399–2407.

DOI: 10.1002/adma.201504572

Google Scholar

[13] H.L. Zhuang, R.G. Hennig, Computational search for single-layer transition-metal dichalcogenide photocatalysts, J. Phys. Chem. C. 117 (2013) 20440–20445.

DOI: 10.1021/jp405808a

Google Scholar

[14] Y. Wang, L. Li, W. Yao, S. Song, J.T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y.Q. Wang, E. Wang, Y. Shao, Y.Y. Zhang, H.T. Yang, E.F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S.J. Pennycook, S.T. Pantelides, H.J. Gao, Monolayer PtSe, a New Semiconducting Transition-Metal-Dichalcogenide, Epitaxially Grown by Direct Selenization of Pt, Nano Lett. 15 (2015) 4013–4018.

DOI: 10.1021/acs.nanolett.5b00964

Google Scholar

[15] Z. Huang, W. Zhang, W. Zhang, Computational search for two-dimensional MX2 semiconductors with possible high electron mobility at room temperature, Materials (Basel). 9 (2016) 1–13.

DOI: 10.3390/ma9090716

Google Scholar

[16] L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9 (2014) 372–377.

DOI: 10.1038/nnano.2014.35

Google Scholar

[17] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865–3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[18] S. Ahmad, Strained noble metal di chalcogenides PtX2(X = S, Se) mono-layer: Ab initio study of electronic and lattice dynamic properties, Phys. E Low-Dimensional Syst. Nanostructures. 95 (2018) 139–143.

DOI: 10.1016/j.physe.2017.09.016

Google Scholar

[19] M. Sajjad, N. Singh, A.U. Schwingenschlög, Strongly bound excitons in monolayer PtS 2 and PtSe 2, Appl. Phys. Lett. 043101 (2018).

DOI: 10.1063/1.5010881

Google Scholar

[20] Z. Guan, S. Ni, S. Hu, Band gap opening of graphene by forming a graphene/PtSe2van der Waals heterojunction, RSC Adv. 7 (2017) 45393–45399.

DOI: 10.1039/c7ra06865d

Google Scholar

[21] S.S. Abed Al- Abbas, M.K. Muhsin, H.R. Jappor, Tunable optical and electronic properties of gallium telluride monolayer for photovoltaic absorbers and ultraviolet detectors, Chem. Phys. Lett. 713 (2018) 46–51.

DOI: 10.1016/j.cplett.2018.10.020

Google Scholar

[22] C. Xia, T. Wang, P. Song, J. Du, Z. Wei, L. Fang, J. Li, Elastic, electronic and optical properties of the two-dimensional PtX2 (X = S, Se, and Te) monolayer, Appl. Surf. Sci. 435 (2017) 476–482.

DOI: 10.1016/j.apsusc.2017.11.106

Google Scholar

[23] S. Liu, Z. Liu, Hybridization induced metallic and magnetic edge states in noble transition-metal-dichalcogenides of PtX2(X = S, Se) nanoribbons, Phys. Chem. Chem. Phys. 20 (2018) 21441–21446.

DOI: 10.1039/c8cp03640c

Google Scholar

[24] S. Sabah, A.A.- Abbas, M. Kadhim, H. Rahman, Tunable optical and electronic properties of gallium telluride monolayer for photovoltaic absorbers and ultraviolet detectors, Chem. Phys. Lett. 713 (2018) 46–51.

DOI: 10.1016/j.cplett.2018.10.020

Google Scholar

[25] S. Choi, Z. Shaolin, W. Yang, Layer-number-dependent work function of MoS2 nanoflakes, J. Korean Phys. Soc. 64 (2014) 1550–1555.

DOI: 10.3938/jkps.64.1550

Google Scholar

[26] S.R.L.E.B.K.S.K.P.K. Young-Jun Yu Yue Zhao, Y.-J. Yu, Y. Zhao, S. Ryu, L.E. Brus, K.S. Kim, P. Kim, Tuning the graphene work function by electric field effect., Nano Lett. 9 (2009) 3430–4.

DOI: 10.1021/nl901572a

Google Scholar

[27] Hasan I. Hussein, Auday H. Shaban, Iman H. Khudayer, Enhancements of p-Si/CdO Thin Films Solar Cells with doping (Sb, Sn, Se), Energy Procedia, 157 (2019):150-157.

DOI: 10.1016/j.egypro.2018.11.175

Google Scholar