[1]
J.F. Bell, Experimental foundations of mechanics of deformable solids. M.: Nauka, (1984).
Google Scholar
[2]
G.N. Chernyshev, A.L. Popov, V.M. Kozintsev, I.I. Ponomarev, Residual stresses in deformable solids. M.: Nauka, (1996).
Google Scholar
[3]
A.I. Samokhotsky, M.N. Kunyavsky, Metallurgy, M.: Metallurgy, (1969).
Google Scholar
[4]
A.I. Zyubrik, N.N. Zhagalyak, I.I. Vasilenko, et al, Removal of residual stresses by low-temperature annealing to prevent stress-corrosion cracking of carbon steels, Mater Sci, 5 (1972) 312-317.
DOI: 10.1007/bf00730332
Google Scholar
[5]
N.F. Bolkhovitinov, Encyclopedia of Mechanical Engineering XXL, Metal Science and Heat Treatment, I: Mechanical Engineering, Moscow, (1965).
Google Scholar
[6]
M.V. Polonik, E.E. Rogachev, A Decrease of Residual Stresses in the Elastic-Plastic-Creep Medium at Temperature Influence, Advanced Materials Research. 1040 (2014) 870-875.
DOI: 10.4028/www.scientific.net/amr.1040.870
Google Scholar
[7]
M.V. Polonik, E.E. Rogachev, Mathematical Modeling of the Technological Process of Residual Stresses Relief in Metals at Low-Temperature Exposure, Key Engineering Materials 685 (2016) 27-31.
DOI: 10.4028/www.scientific.net/kem.685.27
Google Scholar
[8]
M.V. Polonik, E.E. Rogachev, On the removal of residual stresses in the elastic-plastic medium for example a hollow sphere, XXXVI Far Eastern Mathematical Workshop Academician E.V. Zolotov, Vladivostok. (2012) 175-177.
Google Scholar
[9]
E.V. Murashkin, M.V. Polonik, Development of approaches to the creep process modeling under large deformations, Applied Mechanics and Materials. 249-250 (2013) 833-837.
DOI: 10.4028/www.scientific.net/amm.249-250.833
Google Scholar
[10]
E.V. Murashkin, M. Polonik, Determination of a Loading Pressure in the Metal Forming by the Given Movements, Advanced Materials Research. 842 (2014) 494-499.
DOI: 10.4028/www.scientific.net/amr.842.494
Google Scholar
[11]
A.M. Lokoshchenko, Process modeling creep and stress rupture of metals. M.: MSIU, (2007).
Google Scholar
[12]
A.A. Burenin, L.V. Kovtanyuk, M.V. Polonik, The possibility of reiterated plastic flow at the overall unloading of an elastoplastic medium, Doklady Physics. 45(12) (2000) 694-696.
DOI: 10.1134/1.1342452
Google Scholar
[13]
A.A. Burenin, L.V. Kovtanyuk, M.V. Polonik, The formation of a one-dimensional residual stress field in the medium of a cylindrical defect in the continuity of an elastoplastic medium, Journal of Applied Mathematics and Mechanics. 67 (2003) 283-292.
DOI: 10.1016/s0021-8928(03)90014-1
Google Scholar
[14]
G. Carslaw, G. Jaeger Thermal conductivity of solids. Nauka: Moscow, (1964).
Google Scholar
[15]
I.S. Grigoriev, E.Z. Meylthova, Physical quantities. M.: Energoatomizdat, (1991).
Google Scholar
[16]
A.A. Burenin, L.V. Kovtanjuk, I.A. Terletskiy, To the Formation of Residual Stress Field in the Vicinity of a Spherical Cavity Viscoelastoplastic Material, Far Eastern Mathematical Journal. 12(2) (2012) 146-159.
Google Scholar
[17]
S. Taira, R. Ohtani, Theory of high-temperature strength materials, Translated from the Japanese. Metallurgia Publ., Moscow, (1986).
Google Scholar