[1]
M. Kumar, C.S. Sandeep, G. Kumar, Y.K. Mishra, Philip R., G.B. Reddy, Plasmonic and nonlinear optical absorption properties of Ag:ZrO2 nanocomposite thin films, Plasmonic. 9 (2014) 129-136.
DOI: 10.1007/s11468-013-9605-z
Google Scholar
[2]
H. Bayrakdar, Electromagnetic propagation and absorbing property of ferrite-polymer nanocomposite, Progress In Electromagnetics Research. 25 (2012) 269-281.
DOI: 10.2528/pierm12072303
Google Scholar
[3]
A. Palau, H. Parvaneh, N.A. Stelmashenko, H. Wang, J.L. Macmanus-Driscoll, M.G Blamire, Hysteretic vortex pinning in superconductor-ferromagnet nanocomposites, Physical review letters. 98 (2007) 117003.
DOI: 10.1103/physrevlett.98.117003
Google Scholar
[4]
Q. Dai, J.Q. Xiao, S. Ren, Solution processed MnBi - FeCo magnetic nanocomposites, Nano Research. 9 (2016) 3222-3228.
DOI: 10.1007/s12274-016-1200-0
Google Scholar
[5]
S.M.V. Puydinger, S. Barth, F. Beron, K.R. Pirota, A.L. Pinto, J.P. Sinnecker, S. Moshkalev, J.A. Diniz, I. Utke, Magnetoelectrical Transport Improvements of Postgrowth Annealed Iron–Cobalt Nanocomposites: A Possible Route for Future Room-Temperature Spintronics, ACS Applied Nano Materials. 1(2018) 3364-3374.
DOI: 10.1021/acsanm.8b00581
Google Scholar
[6]
S. Tanabe, S. Miwa, M. Mizuguchi, T. Shinjo, Y. Suzuki, M. Shiraishi, Spin-dependent transport in nanocomposites of Al q3 molecules and cobalt nanoparticles, Applied Physics Letters. 91 (2007) 063123.
DOI: 10.1063/1.2769748
Google Scholar
[7]
L. Liao, X. Li, Y. Wang, H. Fu, Y. Li, Effects of surface structure and morphology of nanoclays on the properties of jatropha curcas oil-based waterborne polyurethane/clay nanocomposites, Industrial & Engineering Chemistry Research. 55 (2016) 11689-11699.
DOI: 10.1021/acs.iecr.6b02527
Google Scholar
[8]
N. Nagaosa, Y. Tokura, Topological properties, and dynamics of magnetic skyrmions, Nature nanotechnology. 8 (2013) 899-911.
DOI: 10.1038/nnano.2013.243
Google Scholar
[9]
W. Koshibae, N. Nagaosa Theory of anti skyrmions in magnets, Nature communications. 7 (2016) 1-8.
Google Scholar
[10]
D. Lenk, R. Morari, V.I. Zdravkov, A. Ullrich, Y. Khaydukov, G. Obermeier, C. Mueller, A.S. Sidorenko, K. H.-A. von Nidda, S. Horn, L.R. Tagirov, R.Tidecks, Full Switching FSF-type Superconducting Spin-Triplet MRAM-Element, R. Phys. Rev. B. 96 (2017) 184521/1-184521/18.
DOI: 10.1103/physrevb.96.184521
Google Scholar
[11]
L. Lazar, K. Westerholt, H. Zabel, L. R. Tagirov, Yu. V. Goryunov, N. N Garifiyanov, I. A. Garifullin, Superconductor/ferromagnet proximity effect in Fe/Pb/Fe trilayers, Phys. Rev. B. 61 (2000) 3711-3722.
DOI: 10.1103/physrevb.61.3711
Google Scholar
[12]
А.V. Vakhrushev, A.Yu. Fedotov, V. Boian, R. Morari, A.S. Sidorenko, Molecular dynamics modeling of formation processes parameters influence on a superconducting spin valve structure and morphology, Beilstein Archives. 202067 (2020), 26p. https://doi.org/10.3762/bxiv.2020.67.v1.
DOI: 10.3762/bxiv.2020.67.v1
Google Scholar
[13]
A.V. Vakhrouchev, A.M. Lipanov, Numerical analysis of the atomic structure and shape of metal nanoparticles, Computational Mathematics and Mathematical Physics. 47 (2007) 1702-1711.
DOI: 10.1134/s0965542507100107
Google Scholar
[14]
A.V. Vakhrushev, A.Yu. Fedotov, A.A. Vakhrushev, Modeling of processes of composite nanoparticle formation by the molecular dynamic's technique. Part 1. Structure of composite nanoparticles, Nanoscience and Technology: An International Journal. 2 (2011) 9-38.
DOI: 10.1615/nanomechanicsscitechnolintj.v2.i1.20
Google Scholar
[15]
A. V. Vakhrushev, O. Y. Severyukhina, A. V. Severyukhin, A. A. Vakhrushev, N. G. Galkin, Simulation of the processes of formation of quantum dots on the basis of silicides of transition metals, International Journal of Nanomechanics Science and Technology. 3 (2012) 51-75.
DOI: 10.1615/nanomechanicsscitechnolintj.v3.i1.30
Google Scholar
[16]
R.G. Valeev, A.V. Vakhrushev, A.Yu. Fedotov, D.I. Petukhov, Functional Semiconductor Nanostructures in Porous Anodic Alumina Matrices: Modeling, Synthesis, Properties, Apple Academic Press, Waretown, (2019).
DOI: 10.1201/9780429398148-2
Google Scholar
[17]
M.I. Baskes, Modified embedded-atom potentials for cubic materials and impurities, Physical Review B. 46 (1992) 2727-2742.
DOI: 10.1103/physrevb.46.2727
Google Scholar
[18]
B-J. Lee, M.I. Baskes, H. Kim, Y.K. Cho Second nearest-neighbor modified embedded atom method potentials for bcc transition metals, Phys. Rev. B. 64 (2001) 184102.1-11.
DOI: 10.1103/physrevb.64.184102
Google Scholar
[19]
A. V. Vakhrushev Computational Multiscale Modeling of Multiphase Nanosystems. Theory and Applications, Apple Academic Press, Waretown, New Jersey, (2017).
Google Scholar
[20]
N. Klenov, Y. Khaydukov, S. Bakurskiy, R. Morari, I. Soloviev, V. Boian, T. Keller, M. Kupriyanov, A. Sidorenko, B. Keimer, Periodic Co/Nb pseudo spin valve for cryogenic memory, Beilstein J. Nanotechnol. 10 (2019) 833-839.
DOI: 10.3762/bjnano.10.83
Google Scholar