Simulation of Multilayer Nanosystems Interface Formation Process for Spintronics

Article Preview

Abstract:

Modeling the processes of forming contact regions (interface) of the multilayer niobium-cobalt nanosystem is carried out. The morphology and composition of a multilayer nanosystem interface is investigated. The layer boundaries morphology is shown to depend on the deposition substrate temperature and, largely, is determined by preparing the surface for deposition. The work considers the deposition surface modification by removing its defects. Simulation showed that surface preparation significantly affects the morphology and composition of a multilayer nanosystem interface, depending on the type of deposited atoms and atoms forming the deposition surface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-65

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Kumar, C.S. Sandeep, G. Kumar, Y.K. Mishra, Philip R., G.B. Reddy, Plasmonic and nonlinear optical absorption properties of Ag:ZrO2 nanocomposite thin films, Plasmonic. 9 (2014) 129-136.

DOI: 10.1007/s11468-013-9605-z

Google Scholar

[2] H. Bayrakdar, Electromagnetic propagation and absorbing property of ferrite-polymer nanocomposite, Progress In Electromagnetics Research. 25 (2012) 269-281.

DOI: 10.2528/pierm12072303

Google Scholar

[3] A. Palau, H. Parvaneh, N.A. Stelmashenko, H. Wang, J.L. Macmanus-Driscoll, M.G Blamire, Hysteretic vortex pinning in superconductor-ferromagnet nanocomposites, Physical review letters. 98 (2007) 117003.

DOI: 10.1103/physrevlett.98.117003

Google Scholar

[4] Q. Dai, J.Q. Xiao, S. Ren, Solution processed MnBi - FeCo magnetic nanocomposites, Nano Research. 9 (2016) 3222-3228.

DOI: 10.1007/s12274-016-1200-0

Google Scholar

[5] S.M.V. Puydinger, S. Barth, F. Beron, K.R. Pirota, A.L. Pinto, J.P. Sinnecker, S. Moshkalev, J.A. Diniz, I. Utke, Magnetoelectrical Transport Improvements of Postgrowth Annealed Iron–Cobalt Nanocomposites: A Possible Route for Future Room-Temperature Spintronics, ACS Applied Nano Materials. 1(2018) 3364-3374.

DOI: 10.1021/acsanm.8b00581

Google Scholar

[6] S. Tanabe, S. Miwa, M. Mizuguchi, T. Shinjo, Y. Suzuki, M. Shiraishi, Spin-dependent transport in nanocomposites of Al q3 molecules and cobalt nanoparticles, Applied Physics Letters. 91 (2007) 063123.

DOI: 10.1063/1.2769748

Google Scholar

[7] L. Liao, X. Li, Y. Wang, H. Fu, Y. Li, Effects of surface structure and morphology of nanoclays on the properties of jatropha curcas oil-based waterborne polyurethane/clay nanocomposites, Industrial & Engineering Chemistry Research. 55 (2016) 11689-11699.

DOI: 10.1021/acs.iecr.6b02527

Google Scholar

[8] N. Nagaosa, Y. Tokura, Topological properties, and dynamics of magnetic skyrmions, Nature nanotechnology. 8 (2013) 899-911.

DOI: 10.1038/nnano.2013.243

Google Scholar

[9] W. Koshibae, N. Nagaosa Theory of anti skyrmions in magnets, Nature communications. 7 (2016) 1-8.

Google Scholar

[10] D. Lenk, R. Morari, V.I. Zdravkov, A. Ullrich, Y. Khaydukov, G. Obermeier, C. Mueller, A.S. Sidorenko, K. H.-A. von Nidda, S. Horn, L.R. Tagirov, R.Tidecks, Full Switching FSF-type Superconducting Spin-Triplet MRAM-Element, R. Phys. Rev. B. 96 (2017) 184521/1-184521/18.

DOI: 10.1103/physrevb.96.184521

Google Scholar

[11] L. Lazar, K. Westerholt, H. Zabel, L. R. Tagirov, Yu. V. Goryunov, N. N Garifiyanov, I. A. Garifullin, Superconductor/ferromagnet proximity effect in Fe/Pb/Fe trilayers, Phys. Rev. B. 61 (2000) 3711-3722.

DOI: 10.1103/physrevb.61.3711

Google Scholar

[12] А.V. Vakhrushev, A.Yu. Fedotov, V. Boian, R. Morari, A.S. Sidorenko, Molecular dynamics modeling of formation processes parameters influence on a superconducting spin valve structure and morphology, Beilstein Archives. 202067 (2020), 26p. https://doi.org/10.3762/bxiv.2020.67.v1.

DOI: 10.3762/bxiv.2020.67.v1

Google Scholar

[13] A.V. Vakhrouchev, A.M. Lipanov, Numerical analysis of the atomic structure and shape of metal nanoparticles, Computational Mathematics and Mathematical Physics. 47 (2007) 1702-1711.

DOI: 10.1134/s0965542507100107

Google Scholar

[14] A.V. Vakhrushev, A.Yu. Fedotov, A.A. Vakhrushev, Modeling of processes of composite nanoparticle formation by the molecular dynamic's technique. Part 1. Structure of composite nanoparticles, Nanoscience and Technology: An International Journal. 2 (2011) 9-38.

DOI: 10.1615/nanomechanicsscitechnolintj.v2.i1.20

Google Scholar

[15] A. V. Vakhrushev, O. Y. Severyukhina, A. V. Severyukhin, A. A. Vakhrushev, N. G. Galkin, Simulation of the processes of formation of quantum dots on the basis of silicides of transition metals, International Journal of Nanomechanics Science and Technology. 3 (2012) 51-75.

DOI: 10.1615/nanomechanicsscitechnolintj.v3.i1.30

Google Scholar

[16] R.G. Valeev, A.V. Vakhrushev, A.Yu. Fedotov, D.I. Petukhov, Functional Semiconductor Nanostructures in Porous Anodic Alumina Matrices: Modeling, Synthesis, Properties, Apple Academic Press, Waretown, (2019).

DOI: 10.1201/9780429398148-2

Google Scholar

[17] M.I. Baskes, Modified embedded-atom potentials for cubic materials and impurities, Physical Review B. 46 (1992) 2727-2742.

DOI: 10.1103/physrevb.46.2727

Google Scholar

[18] B-J. Lee, M.I. Baskes, H. Kim, Y.K. Cho Second nearest-neighbor modified embedded atom method potentials for bcc transition metals, Phys. Rev. B. 64 (2001) 184102.1-11.

DOI: 10.1103/physrevb.64.184102

Google Scholar

[19] A. V. Vakhrushev Computational Multiscale Modeling of Multiphase Nanosystems. Theory and Applications, Apple Academic Press, Waretown, New Jersey, (2017).

Google Scholar

[20] N. Klenov, Y. Khaydukov, S. Bakurskiy, R. Morari, I. Soloviev, V. Boian, T. Keller, M. Kupriyanov, A. Sidorenko, B. Keimer, Periodic Co/Nb pseudo spin valve for cryogenic memory, Beilstein J. Nanotechnol. 10 (2019) 833-839.

DOI: 10.3762/bjnano.10.83

Google Scholar