Friction Stir Welding of Steel Structures - A Brief Review

Article Preview

Abstract:

Friction stir welding is a relatively new technique, developed in 1991, which, due to its advantages, has been continuously developed and applied to industrial applications. This process of joining materials in solid state is an extremely complex one because of the physical phenomena that occur during the process, which makes the research still in full development. The paper presents an analysis of recent scientific work on the use of the FSW process for the joining of steel structures. Thus, the types of steels and merged structures, the processes used and the technological parameters used are analyzed. On the basis of this analysis, the main conclusions of the studied works are summarized and the main development directions for research on the FSW process of steel structures are identified.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-119

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Information on; https://www.twi-global.com/media-and-events/insights/friction-stir-welding-patents-a-stirring-story.

Google Scholar

[2] S.W. Kallee, Industrial applications of friction stir welding, in Friction stir welding, from basic to applications, Woodhead Publishing Limited, (2010), 124-163.

DOI: 10.1533/9781845697716.1.118

Google Scholar

[3] R. S. Mishra, Friction Stir Welding and Processing, ASM International, (2007).

Google Scholar

[4] E. Feulvarch, Modélisation numérique du procédé de soudage par friction-malaxage, Techniques de l'ingénieur, (2011).

DOI: 10.51257/a-v1-bm7764

Google Scholar

[5] Ifante, Tool and welding design, Advances in Friction-Stir Welding and Processing, (2014), 199–240.

DOI: 10.1533/9780857094551.199

Google Scholar

[6] Anand, Studies on process parameters and tool geometry selecting aspects of Friction Stir Welding – A review, Materials Today: Proceedings, (2019).

DOI: 10.1016/j.matpr.2019.12.042

Google Scholar

[7] Y. Zhang, Review of tools for friction stir welding and processing, Canadian Metallurgical Quarterly, (2012), vol. 51, nr. 3, 250-261.

DOI: 10.1179/1879139512y.0000000015

Google Scholar

[8] T. Weinberger, Process and Tool Development for Friction Stir Welding of Steels, Institute for Materials Science and Welding, Graz, (2010).

Google Scholar

[9] E. Cetkin, Microstructure and Mechanical Properties of AA7075-AA5182 jointed by FSW, Journal of Materials Processing Technology, (2019),vol. 268, 107-116.

DOI: 10.1016/j.jmatprotec.2019.01.005

Google Scholar

[10] d. Fu, Effect of welding heat input and post-welding natural aging on hardness of stir zone for friction stir-welded 2024-T3 aluminum alloy thin-sheet, Materials Science&Engineering, (2013), 319-324.

DOI: 10.1016/j.msea.2012.08.105

Google Scholar

[11] F. Picot, Optimisation des conditions de mise en oeuvre de la jonction Ti/Al par FSW : influences des propriétés mécaniques et metallurgiques des interfaces, Université de Caen Normandie, Caen, (2018).

DOI: 10.58282/colloques.4109

Google Scholar

[12] Dinda, Friction stir welding of high-strength steel, The International Journal of Advanced Manufacturing Technology, (2019), vol. 103, 4763-4769.

DOI: 10.1007/s00170-019-04003-7

Google Scholar

[13] R. Roodgari, Microstructure and mechanical properties of IF/St52 steel composite produced by friction stir lap welding, Materials Science & Engineering , (2020),vol. 772.

DOI: 10.1016/j.msea.2019.138775

Google Scholar

[14] Küçükömeroğlu, Investigation of mechanical and microstructural properties of friction stir welded dual phase (DP) steel, IOP Conf. Series: Materials Science and Engineering, vol. 629, (2019).

DOI: 10.1088/1757-899x/629/1/012010

Google Scholar

[15] Mira-Aguiar, Tool assisted friction welding: a FSW related technique for the linear lap welding of very thin steel plates, Journal of Materials, (2016), vol. 238, 73-80.

DOI: 10.1016/j.jmatprotec.2016.07.006

Google Scholar

[16] G. İpekoğlu, Investigation of microstructure and mechanical properties of friction stir welded dissimilar St37/St52 joints, Material Research Express,( 2019).

DOI: 10.1088/2053-1591/aafb9f

Google Scholar

[17] Zafar, Investigating Friction Stir Welding on Thick Nylon 6 Plates, WELDING JOURNAL, (2016), vol. 95, 210-218.

Google Scholar

[18] Information on: http://www.aetech.se/catalog.pdf.

Google Scholar

[19] R. Mishra, Friction Stir Welding, în Friction Stir welding of 2XXX Aluminium Alloys Including Al-Li Alloys, Elsevier, (2017), 1-13.

DOI: 10.1016/b978-0-12-805368-3.00001-7

Google Scholar

[20] L. Cui, Friction stir welding of a high carbon steel, Scripta Materialia, (2007), 637-640.

DOI: 10.1016/j.scriptamat.2006.12.004

Google Scholar

[21] Dinda, Friction stir welding of high-strength steel, The International Journal of Advanced Manufacturing Technology, (2019).

Google Scholar

[22] H. Lee, An Evaluation of Global and Local Tensile Properties of Friction-StirWelded DP980 Dual-Phase Steel Joints Using a Digital Image Correlation Method, Materials, (2015), 8424-8436.

DOI: 10.3390/ma8125467

Google Scholar

[23] A. Tiwari, Effect of Tool Offset and Rotational Speed in Dissimilar Friction Stir Welding of AISI 304 Stainless Steel and Mild Steel, Journal of Materials Engineering and Performance, (2019) vol. 28, nr. 10, 6365-6379.

DOI: 10.1007/s11665-019-04362-y

Google Scholar

[24] C. Tingey, Effect of tool centreline deviation on the mechanical properties of friction stir welded DH36 steel, Materials and Design, (2015), vol. 65, 896-906.

DOI: 10.1016/j.matdes.2014.10.017

Google Scholar

[25] P. d. Cunha, Effect of welding speed on friction stir welds of GL E36 shipbuilding steel, Journal of Materials Research and Tehnology, (2019), vol. 8, nr. 1, 1041-1051.

DOI: 10.1016/j.jmrt.2018.07.014

Google Scholar

[26] Al-Moussawi, Defects in Friction Stir Welding of Steel, Metallography, Microstructure, and Analysis, (2018), vol. 7, 194-202.

DOI: 10.1007/s13632-018-0438-1

Google Scholar

[27] S. Kumar, Effect of tool tilt angle on weld joint properties of friction stir welded AISI 316L stainless steel sheets, Measurement, (2020).

DOI: 10.1016/j.measurement.2019.107083

Google Scholar

[28] H. Wang, Microstructure and mechanical properties of dissimilar friction stir welded type 304 austenitic stainless steel to Q235 low carbon steel, Materials Characterization, (2019), vol. 155.

DOI: 10.1016/j.matchar.2019.109803

Google Scholar

[29] M. Husain, Friction Stir Welding of Steel: Heat Input, Microstructure, and Mechanical Property Co-relation, Journal of Materials Engineering and Performance, (2015), 3673-3683.

DOI: 10.1007/s11665-015-1652-5

Google Scholar

[30] P. Johnson, Microstructure and mechanical properties of friction stir welded AISI321 stainless steel, Journal of Materials Research and Technology, (2020).

DOI: 10.1016/j.jmrt.2020.02.023

Google Scholar

[31] M. Husain, Conventional and in situ tensile test of friction stir welded steel – Optimization of processing parameters, Material Science&Engineering Technology, (2018), 991-1005.

DOI: 10.1002/mawe.201700076

Google Scholar

[32] M. Imam, Microstructural control and mechanical properties in friction stir welding of medium carbon low alloy S45C steel, Material Science&Engineering A, (2015), 24-34.

DOI: 10.1016/j.msea.2015.03.089

Google Scholar

[33] A. Santos, Thermal history in UNS S32205 duplex stainless steel friction stir welds, Science and Technology of Welding and Joining, (2014), vol. 19, nr. 2, 150-156.

DOI: 10.1179/1362171813y.0000000174

Google Scholar

[34] T. Küçükömeroğlu, Microstructure and mechanical properties of friction-stir welded St52 steel joint, International Journal of Minerals, Metallurgy and Materials, (2018), 1457-1466.

DOI: 10.1007/s12613-018-1700-x

Google Scholar

[35] T. Küçükömeroglu, Mechanical properties of friction stir welded St 37 and St 44 steel joints, materials testing for joining and additive manufacturing applications,(2018),vol. 60, 1163-1170.

DOI: 10.3139/120.111266

Google Scholar

[36] F. Dardouri, Dispositif d'assistance associé à des robots manipulateurs utilisés dans des procédés de fabrication/FSW, Ecole N ationale Supérieure d'Arts et Métiers & Karlsruhe Institut für Technologie, Metz, (2018).

Google Scholar

[37] N. Siddiquee, Microstructural characterization and in-process traverse force during friction stir welding of austenitic stainless steel, Journal Mechanical Engineering Science, (2019),1989-1996.

DOI: 10.1177/0954406219888238

Google Scholar