Possibilities to Apply Friction Stir Processing FSP in Surface Engineering

Article Preview

Abstract:

The results obtained by ISIM Timisoara to the development of the friction stir welding process (FSW) have supported the extension of the researches on some derived processes, including friction stir processing (FSP). The experimental programs (the researches) were developed within complex research projects, aspects regarding the principle of the process, modalities and techniques of application, experiments for specific applications, being approached. The paper presents good results obtained by friction stir processing of cast aluminum alloys and copper alloys. The optimal process conditions, optimal characteristics of the processing tools were defined. The complex characterization of the processed areas was done, the advantages of the process applying being presented, especially for the cast aluminum alloys: EN AW 4047, EN AW 5083 and EN AW 7021. The characteristics of the processed areas are compared with those of the base materials. The results obtained are a solid basis for substantiating of some specific industrial applications, especially in the automotive, aeronautical / aerospace fields.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

56-65

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Uday Sen, Kulbhushan Sharma, Friction Stir Processing of Aluminum Alloys: A Literature Survey, (2016) IJSRSET, Vol. 2, Issue 2, Print ISSN: 2395-1990, Online ISSN: 2394-4099.

Google Scholar

[2] R.S, Mishra, M.W. Mahoney, Friction Stir Welding and Processing, pp.309-350, ASM International, The Materials Information Society, USA, (2007), ISBN 978-0-87170-840-3.

Google Scholar

[3] R.S. Mishra, M.W. Mahoney, Friction Stir Welding and Processing IV, TMS The Minerals, Metals & Materials Society, USA, (2007), ISBN 978-0-87339-661-5.

Google Scholar

[4] R.A. Behnagh, N. Shen, M. Abdollahi, H. Ding, Ultrafine grained surface layer formation of Aluminum alloy 5083 by Friction Stir Processing, Procedia CIRP 45 (2016), 243-246.

DOI: 10.1016/j.procir.2016.02.062

Google Scholar

[5] U. Sen, K.Sharma, Effects of Process Parameters of Friction Stir Processing on Tensile Strength of AA6063 Aluminum Alloy", (2016) IJSRSET, Vol. 2, Issue 2.

Google Scholar

[6] S. K .Singh, R.J. Immanuel, S. Babu, S.K. Panigrahi, G.D. Janaki Ram, Influence of multi-pass friction stir processing on wear behaviour and machinability of an Al-Si hypoeutectic A356 alloy, J Mater Process Technol, May (2016).

DOI: 10.1016/j.jmatprotec.2016.05.019

Google Scholar

[7] W.H. Loke, R. Ibrahim, S. Lathabai, Improving the Microstructure and Mechanical Properties of a Cast Mg-9Al-1Zn Alloy Using Friction Stir Processing, Mater. Sci. Forum (Vol 838-839) online Jan. (2016), Trans Tech Publications.

DOI: 10.4028/www.scientific.net/msf.838-839.214

Google Scholar

[8] Zhi Long Lu, Da Tong Zhang, Microstructure and Mechanical Properties of a Fine-Grained AZ91 Magnesium Alloy Prepared by Multi-Pass Friction Stir Processing, Mater. Sci. Forum (Volume 850),10.4028/www.scientific.net/MSF.850.778, online, March (2016).

DOI: 10.4028/www.scientific.net/msf.850.778

Google Scholar

[9] O.O. Tinubu, S. Das, A. Dutt, J.E. Mogonye, s.a, Friction stir processing of A-286 stainless steel- Microstructural evolution during wear, Wear, Vol 356–357, (2016), p.94–100.

DOI: 10.1016/j.wear.2016.03.018

Google Scholar

[10] R.S. Mishra, Use of Green Technology (FSP) for processing of 99.9% Copper with Carbon Nano Tubes, AJMECS, Vol. 1(1), January (2016): 49-59, ISSN (Online): 2455-7013.

Google Scholar

[11] S. Thapliyal, D.K. Dwivedi, Study of the effect of friction stir processing of the sliding wear behavior of cast NiAl bronze: A statistical analysis, Tribol Int, Vol 97/(2016).

DOI: 10.1016/j.triboint.2016.01.008

Google Scholar

[12] NanXu, YefengBao, Enhanced mechanical properties of tungsten inert gas welded AZ31 magnesium alloy joint using two-pass friction stir processing with rapid cooling, Mater. Sci. Eng. A655(2016)292–299.

DOI: 10.1016/j.msea.2016.01.009

Google Scholar

[13] M. Navazani, K. Dehghani, Fabrication of Mg-ZrO2 surface layer composites by friction stir processing", J. Mater. Process. Technol., Vol. 229, March (2016), p.439–449.

DOI: 10.1016/j.jmatprotec.2015.09.047

Google Scholar

[14] C.N. Shyam Kumar,Ranjit Bauri, Devinder Yadav, Wear properties of 5083Al–W surface composite fabricated by friction stir processing, Tribol Int 101(2016)284–290.

DOI: 10.1016/j.triboint.2016.04.033

Google Scholar

[15] M. Rahsepar, H. Jarahimoghadam, The Influence of Multipass Friction Stir Processing on the Corrosion Behavior and Mechanical Properties of Zircon-Reinforced Al Metal Matrix Composites", Mater. Sci. Eng. A, 16 May (2016).

DOI: 10.1016/j.msea.2016.05.056

Google Scholar

[16] R. Bauri, G. D. Janaki Ram, D.Yadav, C. N. Shyam Kumar, Effect of process parameters and tool geometry on fabrication of Ni particles reinforced 5083 Al composite by friction stir processing, Mater. Today: Proceedings 2 (2015)3203–3211.

DOI: 10.1016/j.matpr.2015.07.115

Google Scholar

[17] R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci., 51 (2006), pp.881-981, Article PDF (4MB).

DOI: 10.1016/j.pmatsci.2006.02.003

Google Scholar

[18] Y. Huang, T.G. Langdon, Advances in ultrafine-grained materials, Mater. Today, 16 (2013), pp.85-93, Article PDF (3MB).

Google Scholar

[19] M.K.B. Givi, P. Asadi, Advances in Friction Stir Welding and Processing, Woodhead Publishing, Amsterdam (2014).

Google Scholar

[20] M.St. Węglowski, P. Sedek, C. Hamilton, Experimental analysis of residual stress in friction stir processed cast AlSi9Mg aluminum alloy, Key Eng.Mater., 682 (2016), pp.18-23.

DOI: 10.4028/www.scientific.net/kem.682.18

Google Scholar

[21] Vilaça, P., Santos, J. P., Góis, A., Quintino, L., Joining Aluminum Alloys Dissimilar in Thickness by Friction Stir Welding and Fusion Processes, Welding in the World, Vol. 49, No. 3/4, 56-62, (2005).

DOI: 10.1007/bf03266476

Google Scholar

[22] Sorensen C.D, Nelson TW, Packer SM, Allen C., Friction stir processing of D2 tool steel for enhanced blade performance, Friction Stir Welding and Processing IV, TMS 2007 , 409-418.

DOI: 10.1002/9781118062302.ch43

Google Scholar

[23] V. Verbițchi, L.N. López de Lacalle, G. Urbikain Pelayo, J.M. Pérez, a.o., New joining technologies for dissimilar materials, Tecnica y Tecnologia, Spanish Technology in Metalworking/3, No 56/2017, pp.38-46, ISSN 2014-8305, http://www.interempresas.net/Flipbooks/XM/52/html5forpc.html.

Google Scholar

[24] L.N. López de Lacalle; G.Urbikain; I. Azkona; E. Zumalde; L. Okariz; V. Verbitchi; M. Vlascici, Alternative processes for rapid joining technologies, Welding and Material Testing, No.3/2016, Year XXV, ISSN 1453-0392.

Google Scholar