[1]
Kinloch, A. J. 2012. Adhesion and adhesives: science and technology. Springer Science & Business Media. pp.1-20.
Google Scholar
[2]
Hohl, D.K., & Weder, C. 2019. (De) bonding on Demand with Optically Switchable Adhesives. Advanced Optical Materials, 7(16), 1900230.
DOI: 10.1002/adom.201900230
Google Scholar
[3]
Ju, Y.H., Lee, H. J., Han, C. J., Lee, C. R., Kim, Y., & Kim, J. W. 2020. Pressure sensitive adhesive with controllable adhesion for fabrication of ultrathin soft devices. ACS Applied Materials & Interfaces.
DOI: 10.1021/acsami.0c11986
Google Scholar
[4]
Salimi, S., Babra, T. S., Dines, G. S., Baskerville, S. W., Hayes, W., & Greenland, B. W. 2019. Composite polyurethane adhesives that debond-on-demand by hysteresis heating in an oscillating magnetic field. European Polymer Journal, 121, 109264.
DOI: 10.1016/j.eurpolymj.2019.109264
Google Scholar
[5]
Jeon, E. Y., Hwang, B. H., Yang, Y. J., Kim, B. J., Choi, B. H., Jung, G. Y., & Cha, H. J. 2015. Rapidly light-activated surgical protein glue inspired by mussel adhesion and insect structural crosslinking. Biomaterials, 67, 11-19.
DOI: 10.1016/j.biomaterials.2015.07.014
Google Scholar
[6]
Göstl, R., Senf, A., & Hecht, S. 2014. Remote-controlling chemical reactions by light: towards chemistry with high spatio-temporal resolution. Chemical Society Reviews, 43(6), 1982-1996.
DOI: 10.1039/c3cs60383k
Google Scholar
[7]
a) Shafiq, Z., Cui, J., Pastor‐Pérez, L., San Miguel, V., Gropeanu, R. A., Serrano, C., & del Campo, A. 2012. Bioinspired underwater bonding and debonding on demand. Angewandte Chemie, 124(18), 4408-4411; b) Chivers, R. A. 2001. Easy removal of pressure sensitive adhesives for skin applications. International journal of adhesion and adhesives, 21(5), 381-388.
DOI: 10.1002/ange.201108629
Google Scholar
[8]
a) Lee, S.W., Park, J.W., Lee, Y. H., Kim, H. J., Rafailovich, M., & Sokolov, J. 2012. Adhesion performance and UV-curing behaviors of interpenetrated structured pressure sensitive adhesives with 3-MPTS for Si-wafer dicing process. Journal of Adhesion Science and Technology, 26(10-11), 1629-1643; b) Chu, H. H., Wang, C. K., Chuang, K. S., & Chang, C. Y. 2014. Removable acrylic pressure-sensitive adhesives activated by UV-radiation. Journal of Polymer Research, 21(6), 472.
DOI: 10.1163/156856111x618452
Google Scholar
[9]
Schumers, J.M., Fustin, C.A., & Gohy, J. F. 2010. Light‐responsive block copolymers. Macromolecular rapid communications, 31(18), 1588-1607.
DOI: 10.1002/marc.201000108
Google Scholar
[10]
Yang, R., Liu, Y., Chen, J., Zhu, W., & Dong, G. 2019. Photo‐responsive block copolymer containing azobenzene group: Synthesis by reversible addition‐fragmentation chain transfer polymerization and characterization. Journal of Applied Polymer Science, 136(33), 47870.
DOI: 10.1002/app.47870
Google Scholar
[11]
Ercole, F., Davis, T. P., & Evans, R. A. 2010. Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polymer Chemistry, 1(1), 37-54.
DOI: 10.1039/b9py00300b
Google Scholar
[12]
a) Legge, C. H., & Mitchell, G. R. 1992. Photo-induced phase transitions in azobenzene-doped liquid crystals. Journal of Physics D: Applied Physics, 25(3), 492; b) Tamaoki, N., Aoki, Y., Moriyama, M., & Kidowaki, M. 2003. Photochemical phase transition and molecular realignment of glass-forming liquid crystals containing cholesterol/azobenzene dimesogenic compounds. Chemistry of materials, 15(3), 719-726.
DOI: 10.1021/cm020234c
Google Scholar
[13]
Wu, L., Wu, Y., Jin, H., Zhang, L., He, Y., & Tang, X. 2015. Photoswitching properties of hairpin ODNs with azobenzene derivatives at the loop position. MedChemComm, 6(3), 461-468.
DOI: 10.1039/c4md00378k
Google Scholar
[14]
Kumar, G. S., & Neckers, D. C. 1989. Photochemistry of azobenzene-containing polymers. Chemical Reviews, 89(8), 1915-1925.
DOI: 10.1021/cr00098a012
Google Scholar
[15]
Zhou, H., Xue, C., Weis, P., Suzuki, Y., Huang, S., Koynov, K., ... & Wu, S. 2017. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions. Nature Chemistry, 9(2), 145-151.
DOI: 10.1038/nchem.2625
Google Scholar
[16]
Wu, Z., Ji, C., Zhao, X., Han, Y., Müllen, K., Pan, K., & Yin, M. 2019. Green-Light-Triggered Phase Transition of Azobenzene Derivatives toward Reversible Adhesives. Journal of the American Chemical Society, 141(18), 7385-7390.
DOI: 10.1021/jacs.9b01056
Google Scholar
[17]
Okui, Y., & Han, M. 2012. Rational design of light-directed dynamic spheres. Chemical Communications, 48(96), 11763-11765.
DOI: 10.1039/c2cc36443c
Google Scholar
[18]
Akiyama, H., & Yoshida, M. 2012. Photochemically reversible liquefaction and solidification of single compounds based on a sugar alcohol scaffold with multi azo‐arms. Advanced Materials, 24(17), 2353-2356.
DOI: 10.1002/adma.201104880
Google Scholar
[19]
Akiyama, H., Kanazawa, S., Okuyama, Y., Yoshida, M., Kihara, H., Nagai, H., ... & Azumi, R. 2014. Photochemically reversible liquefaction and solidification of multiazobenzene sugar-alcohol derivatives and application to reworkable adhesives. ACS applied materials & interfaces, 6(10), 7933-7941.
DOI: 10.1021/am501227y
Google Scholar
[20]
Akiyama, H., Kanazawa, S., Yoshida, M., Kihara, H., Nagai, H., Norikane, Y., & Azumi, R. 2014. Photochemical liquid–solid transitions in multi-dye compounds. Molecular Crystals and Liquid Crystals, 604(1), 64-70.
DOI: 10.1080/15421406.2014.967743
Google Scholar
[21]
Norikane, Y., Uchida, E., Tanaka, S., Fujiwara, K., Nagai, H., & Akiyama, H. 2016. Photoinduced phase transitions in rod-shaped azobenzene with different alkyl chain length. Journal of Photopolymer Science and Technology, 29(1), 149-157.
DOI: 10.2494/photopolymer.29.149
Google Scholar
[22]
Baroncini, M., d'Agostino, S., Bergamini, G., Ceroni, P., Comotti, A., Sozzani, P., ... & Venturi, M. 2015. Photoinduced reversible switching of porosity in molecular crystals based on star-shaped azobenzene tetramers. Nature chemistry, 7(8), 634-640.
DOI: 10.1038/nchem.2304
Google Scholar
[23]
Zha, R. H., Vantomme, G., Berrocal, J. A., Gosens, R., de Waal, B., Meskers, S., & Meijer, E. W. 2018. Photoswitchable nanomaterials based on hierarchically organized siloxane oligomers. Advanced Functional Materials, 28(1), 1703952.
DOI: 10.1002/adfm.201703952
Google Scholar
[24]
Akiyama, H., Fukata, T., Yamashita, A., Yoshida, M., & Kihara, H. 2017. Reworkable adhesives composed of photoresponsive azobenzene polymer for glass substrates. The Journal of Adhesion, 93(10), 823-830.
DOI: 10.1080/00218464.2016.1219255
Google Scholar
[25]
Ito, S., Yamashita, A., Akiyama, H., Kihara, H., & Yoshida, M. 2018. Azobenzene-based (Meth) acrylates: Controlled radical polymerization, photoresponsive solid–liquid phase transition behavior, and application to reworkable adhesives. Macromolecules, 51(9), 3243-3253.
DOI: 10.1021/acs.macromol.8b00156
Google Scholar
[26]
Zhou, Y., Chen, M., Ban, Q., Zhang, Z., Shuang, S., Koynov, K., ... & Wu, S. 2019. Light-Switchable Polymer Adhesive Based on Photoinduced Reversible Solid-to-Liquid Transitions. ACS Macro Letters, 8(8), 968-972.
DOI: 10.1021/acsmacrolett.9b00459
Google Scholar
[27]
Ito, S., Akiyama, H., Sekizawa, R., Mori, M., Yoshida, M., & Kihara, H. 2018. Light-induced reworkable adhesives based on ABA-type triblock copolymers with azopolymer termini. ACS applied materials & interfaces, 10(38), 32649-32658.
DOI: 10.1021/acsami.8b09319
Google Scholar
[28]
Szejtli, J. 1998. Introduction and general overview of cyclodextrin chemistry. Chemical reviews, 98(5), 1743-1754.
DOI: 10.1021/cr970022c
Google Scholar
[29]
Lee, J. W., Samal, S., Selvapalam, N., Kim, H. J., & Kim, K. 2003. Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Accounts of chemical research, 36(8), 621-630.
DOI: 10.1021/ar020254k
Google Scholar
[30]
Tomatsu, I., Hashidzume, A., & Harada, A. 2006. Contrast viscosity changes upon photoirradiation for mixtures of poly (acrylic acid)-based α-cyclodextrin and azobenzene polymers. Journal of the American Chemical Society, 128(7), 2226-2227.
DOI: 10.1021/ja058345a
Google Scholar
[31]
Yamaguchi, H., Kobayashi, Y., Kobayashi, R., Takashima, Y., Hashidzume, A., & Harada, A. 2012. Photoswitchable gel assembly based on molecular recognition. Nature communications, 3(1), 1-5.
DOI: 10.1038/ncomms1617
Google Scholar
[32]
Takashima, Y., Sahara, T., Sekine, T., Kakuta, T., Nakahata, M., Otsubo, M., ... & Harada, A. 2014. Supramolecular adhesives to hard surfaces: adhesion between host hydrogels and guest glass substrates through molecular recognition. Macromolecular rapid communications, 35(19), 1646-1652.
DOI: 10.1002/marc.201400324
Google Scholar
[33]
Liu, J., Tan, C.S.Y., & Scherman, O.A. 2018. Dynamic interfacial adhesion through cucurbit [n] uril molecular recognition. Angewandte Chemie, 130(29), 8992-8996.
DOI: 10.1002/ange.201800775
Google Scholar
[34]
Weis, P., Hess, A., Kircher, G., Huang, S., Auernhammer, G. K., Koynov, K., ... & Wu, S. 2019. Effects of Spacers on Photoinduced Reversible Solid‐to‐Liquid Transitions of Azobenzene‐Containing Polymers. Chemistry–A European Journal, 25(46), 10946-10953.
DOI: 10.1002/chem.201902273
Google Scholar