Photocontrolled Azo-Containing Adhesives

Article Preview

Abstract:

The photoisomerization of azobenzene (Azo) in system can induce changes of adhesion. Using this feature, some significant breakthroughs have been achieved in distinct adhesive systems from small molecular to polymer to supramolecular. Although the mechanisms vary from different situations, photoisomerization and photothermal effect of azobenzene under different irradiation always play significant role in the switch of the adhesion strength. By utilizing these features, some adhesive systems have illustrated promising and competitive performance. This review will concentrate on these achievements and advantages of photocontrolled adhesives based on azobenzene derivatives which are classified by photocontrolled mechanism. Furthermore, we also give some consideration to the future development of photocontrolled adhesives.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

87-97

Citation:

Online since:

August 2021

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kinloch, A. J. 2012. Adhesion and adhesives: science and technology. Springer Science & Business Media. pp.1-20.

Google Scholar

[2] Hohl, D.K., & Weder, C. 2019. (De) bonding on Demand with Optically Switchable Adhesives. Advanced Optical Materials, 7(16), 1900230.

DOI: 10.1002/adom.201900230

Google Scholar

[3] Ju, Y.H., Lee, H. J., Han, C. J., Lee, C. R., Kim, Y., & Kim, J. W. 2020. Pressure sensitive adhesive with controllable adhesion for fabrication of ultrathin soft devices. ACS Applied Materials & Interfaces.

DOI: 10.1021/acsami.0c11986

Google Scholar

[4] Salimi, S., Babra, T. S., Dines, G. S., Baskerville, S. W., Hayes, W., & Greenland, B. W. 2019. Composite polyurethane adhesives that debond-on-demand by hysteresis heating in an oscillating magnetic field. European Polymer Journal, 121, 109264.

DOI: 10.1016/j.eurpolymj.2019.109264

Google Scholar

[5] Jeon, E. Y., Hwang, B. H., Yang, Y. J., Kim, B. J., Choi, B. H., Jung, G. Y., & Cha, H. J. 2015. Rapidly light-activated surgical protein glue inspired by mussel adhesion and insect structural crosslinking. Biomaterials, 67, 11-19.

DOI: 10.1016/j.biomaterials.2015.07.014

Google Scholar

[6] Göstl, R., Senf, A., & Hecht, S. 2014. Remote-controlling chemical reactions by light: towards chemistry with high spatio-temporal resolution. Chemical Society Reviews, 43(6), 1982-1996.

DOI: 10.1039/c3cs60383k

Google Scholar

[7] a) Shafiq, Z., Cui, J., Pastor‐Pérez, L., San Miguel, V., Gropeanu, R. A., Serrano, C., & del Campo, A. 2012. Bioinspired underwater bonding and debonding on demand. Angewandte Chemie, 124(18), 4408-4411; b) Chivers, R. A. 2001. Easy removal of pressure sensitive adhesives for skin applications. International journal of adhesion and adhesives, 21(5), 381-388.

DOI: 10.1002/ange.201108629

Google Scholar

[8] a) Lee, S.W., Park, J.W., Lee, Y. H., Kim, H. J., Rafailovich, M., & Sokolov, J. 2012. Adhesion performance and UV-curing behaviors of interpenetrated structured pressure sensitive adhesives with 3-MPTS for Si-wafer dicing process. Journal of Adhesion Science and Technology, 26(10-11), 1629-1643; b) Chu, H. H., Wang, C. K., Chuang, K. S., & Chang, C. Y. 2014. Removable acrylic pressure-sensitive adhesives activated by UV-radiation. Journal of Polymer Research, 21(6), 472.

DOI: 10.1163/156856111x618452

Google Scholar

[9] Schumers, J.M., Fustin, C.A., & Gohy, J. F. 2010. Light‐responsive block copolymers. Macromolecular rapid communications, 31(18), 1588-1607.

DOI: 10.1002/marc.201000108

Google Scholar

[10] Yang, R., Liu, Y., Chen, J., Zhu, W., & Dong, G. 2019. Photo‐responsive block copolymer containing azobenzene group: Synthesis by reversible addition‐fragmentation chain transfer polymerization and characterization. Journal of Applied Polymer Science, 136(33), 47870.

DOI: 10.1002/app.47870

Google Scholar

[11] Ercole, F., Davis, T. P., & Evans, R. A. 2010. Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polymer Chemistry, 1(1), 37-54.

DOI: 10.1039/b9py00300b

Google Scholar

[12] a) Legge, C. H., & Mitchell, G. R. 1992. Photo-induced phase transitions in azobenzene-doped liquid crystals. Journal of Physics D: Applied Physics, 25(3), 492; b) Tamaoki, N., Aoki, Y., Moriyama, M., & Kidowaki, M. 2003. Photochemical phase transition and molecular realignment of glass-forming liquid crystals containing cholesterol/azobenzene dimesogenic compounds. Chemistry of materials, 15(3), 719-726.

DOI: 10.1021/cm020234c

Google Scholar

[13] Wu, L., Wu, Y., Jin, H., Zhang, L., He, Y., & Tang, X. 2015. Photoswitching properties of hairpin ODNs with azobenzene derivatives at the loop position. MedChemComm, 6(3), 461-468.

DOI: 10.1039/c4md00378k

Google Scholar

[14] Kumar, G. S., & Neckers, D. C. 1989. Photochemistry of azobenzene-containing polymers. Chemical Reviews, 89(8), 1915-1925.

DOI: 10.1021/cr00098a012

Google Scholar

[15] Zhou, H., Xue, C., Weis, P., Suzuki, Y., Huang, S., Koynov, K., ... & Wu, S. 2017. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions. Nature Chemistry, 9(2), 145-151.

DOI: 10.1038/nchem.2625

Google Scholar

[16] Wu, Z., Ji, C., Zhao, X., Han, Y., Müllen, K., Pan, K., & Yin, M. 2019. Green-Light-Triggered Phase Transition of Azobenzene Derivatives toward Reversible Adhesives. Journal of the American Chemical Society, 141(18), 7385-7390.

DOI: 10.1021/jacs.9b01056

Google Scholar

[17] Okui, Y., & Han, M. 2012. Rational design of light-directed dynamic spheres. Chemical Communications, 48(96), 11763-11765.

DOI: 10.1039/c2cc36443c

Google Scholar

[18] Akiyama, H., & Yoshida, M. 2012. Photochemically reversible liquefaction and solidification of single compounds based on a sugar alcohol scaffold with multi azo‐arms. Advanced Materials, 24(17), 2353-2356.

DOI: 10.1002/adma.201104880

Google Scholar

[19] Akiyama, H., Kanazawa, S., Okuyama, Y., Yoshida, M., Kihara, H., Nagai, H., ... & Azumi, R. 2014. Photochemically reversible liquefaction and solidification of multiazobenzene sugar-alcohol derivatives and application to reworkable adhesives. ACS applied materials & interfaces, 6(10), 7933-7941.

DOI: 10.1021/am501227y

Google Scholar

[20] Akiyama, H., Kanazawa, S., Yoshida, M., Kihara, H., Nagai, H., Norikane, Y., & Azumi, R. 2014. Photochemical liquid–solid transitions in multi-dye compounds. Molecular Crystals and Liquid Crystals, 604(1), 64-70.

DOI: 10.1080/15421406.2014.967743

Google Scholar

[21] Norikane, Y., Uchida, E., Tanaka, S., Fujiwara, K., Nagai, H., & Akiyama, H. 2016. Photoinduced phase transitions in rod-shaped azobenzene with different alkyl chain length. Journal of Photopolymer Science and Technology, 29(1), 149-157.

DOI: 10.2494/photopolymer.29.149

Google Scholar

[22] Baroncini, M., d'Agostino, S., Bergamini, G., Ceroni, P., Comotti, A., Sozzani, P., ... & Venturi, M. 2015. Photoinduced reversible switching of porosity in molecular crystals based on star-shaped azobenzene tetramers. Nature chemistry, 7(8), 634-640.

DOI: 10.1038/nchem.2304

Google Scholar

[23] Zha, R. H., Vantomme, G., Berrocal, J. A., Gosens, R., de Waal, B., Meskers, S., & Meijer, E. W. 2018. Photoswitchable nanomaterials based on hierarchically organized siloxane oligomers. Advanced Functional Materials, 28(1), 1703952.

DOI: 10.1002/adfm.201703952

Google Scholar

[24] Akiyama, H., Fukata, T., Yamashita, A., Yoshida, M., & Kihara, H. 2017. Reworkable adhesives composed of photoresponsive azobenzene polymer for glass substrates. The Journal of Adhesion, 93(10), 823-830.

DOI: 10.1080/00218464.2016.1219255

Google Scholar

[25] Ito, S., Yamashita, A., Akiyama, H., Kihara, H., & Yoshida, M. 2018. Azobenzene-based (Meth) acrylates: Controlled radical polymerization, photoresponsive solid–liquid phase transition behavior, and application to reworkable adhesives. Macromolecules, 51(9), 3243-3253.

DOI: 10.1021/acs.macromol.8b00156

Google Scholar

[26] Zhou, Y., Chen, M., Ban, Q., Zhang, Z., Shuang, S., Koynov, K., ... & Wu, S. 2019. Light-Switchable Polymer Adhesive Based on Photoinduced Reversible Solid-to-Liquid Transitions. ACS Macro Letters, 8(8), 968-972.

DOI: 10.1021/acsmacrolett.9b00459

Google Scholar

[27] Ito, S., Akiyama, H., Sekizawa, R., Mori, M., Yoshida, M., & Kihara, H. 2018. Light-induced reworkable adhesives based on ABA-type triblock copolymers with azopolymer termini. ACS applied materials & interfaces, 10(38), 32649-32658.

DOI: 10.1021/acsami.8b09319

Google Scholar

[28] Szejtli, J. 1998. Introduction and general overview of cyclodextrin chemistry. Chemical reviews, 98(5), 1743-1754.

DOI: 10.1021/cr970022c

Google Scholar

[29] Lee, J. W., Samal, S., Selvapalam, N., Kim, H. J., & Kim, K. 2003. Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Accounts of chemical research, 36(8), 621-630.

DOI: 10.1021/ar020254k

Google Scholar

[30] Tomatsu, I., Hashidzume, A., & Harada, A. 2006. Contrast viscosity changes upon photoirradiation for mixtures of poly (acrylic acid)-based α-cyclodextrin and azobenzene polymers. Journal of the American Chemical Society, 128(7), 2226-2227.

DOI: 10.1021/ja058345a

Google Scholar

[31] Yamaguchi, H., Kobayashi, Y., Kobayashi, R., Takashima, Y., Hashidzume, A., & Harada, A. 2012. Photoswitchable gel assembly based on molecular recognition. Nature communications, 3(1), 1-5.

DOI: 10.1038/ncomms1617

Google Scholar

[32] Takashima, Y., Sahara, T., Sekine, T., Kakuta, T., Nakahata, M., Otsubo, M., ... & Harada, A. 2014. Supramolecular adhesives to hard surfaces: adhesion between host hydrogels and guest glass substrates through molecular recognition. Macromolecular rapid communications, 35(19), 1646-1652.

DOI: 10.1002/marc.201400324

Google Scholar

[33] Liu, J., Tan, C.S.Y., & Scherman, O.A. 2018. Dynamic interfacial adhesion through cucurbit [n] uril molecular recognition. Angewandte Chemie, 130(29), 8992-8996.

DOI: 10.1002/ange.201800775

Google Scholar

[34] Weis, P., Hess, A., Kircher, G., Huang, S., Auernhammer, G. K., Koynov, K., ... & Wu, S. 2019. Effects of Spacers on Photoinduced Reversible Solid‐to‐Liquid Transitions of Azobenzene‐Containing Polymers. Chemistry–A European Journal, 25(46), 10946-10953.

DOI: 10.1002/chem.201902273

Google Scholar