The Influence of Technological Parameters on Morphology of Electrospun Nanofibers Based on Hyaluronic Acid

Article Preview

Abstract:

Electrospinning as a high-functioning, multi-operated, and advanced method of nanofiber production allowing to obtain fibrous materials based on different polymers for a wide range of biomedical and bioengineering applications. Hyaluronic acid is one of the most promising polymers for nanofiber formation due to its unique biological and biochemical properties. In spite of the difficulties and special features of the electrospinning from hyaluronic acid solutions, the amount of studies in this field is ever-growing. Unfortunately, there is a significant shortage of fundamental data describing the relations between the technological parameters and the nanofiber morphology. This study considers the key technological parameters of the electrospinning process such as applied voltage and flow volume rate and evaluates their influence on the morphology, mean diameter, and diameter distribution width of nanofibers based on native hyaluronic acid. The optimal range of the defined parameters has been established, at which the stability of the fiber formation is ensured. It is shown that by varying of the applied voltage and the flow volume rate of the polymer spinning solution, it is possible to control the properties of nanofibers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-131

Citation:

Online since:

September 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Dovedytis, Z.J. Liu, S. Bartlett, Hyaluronic acid and its biomedical applications: A review, Eng. Regen. 1 (2020) 102.

Google Scholar

[2] P. Snetkov, S. Morozkina, R. Olekhnovich, T.H.N. Vu, M. Tyanutova, M. Uspenskaya, Curcumin/Usnic Acid-Loaded Electrospun Nanofibers Based on Hyaluronic Acid, Materials. 13 (2020) 3476.

DOI: 10.3390/ma13163476

Google Scholar

[3] F. Zamboni, E. Ryan, M. Culebras, M.N. Collins, Labile crosslinked hyaluronic acid via urethane formation using bis(β-isocyanatoethyl) disulphide with tuneable physicochemical and immunomodulatory properties, Carbohyd. Polym. 245 (2020) 116501.

DOI: 10.1016/j.carbpol.2020.116501

Google Scholar

[4] I. Alghoraibi, S. Alomari, Different methods for nanofiber design and fabrication, in: A. Barhoum, M. Bechelany, A. Makhlouf (Eds.), Handbook of Nanofibers, Springer, 2018, Cham, pp.1-46.

DOI: 10.1007/978-3-319-42789-8_11-2

Google Scholar

[5] A. Tokarev, O. Trotsenko, I.M. Griffiths, H.A. Stone, S. Minko, Magnetospinning of Nano- and Microfibers, Adv. Mater. 27(23) (2015) 3560-3565.

DOI: 10.1002/adma.201500374

Google Scholar

[6] K.C. Castro, M.G.N. Campos, L.H.I. Mei, Hyaluronic acid electrospinning: Challenges, applications in wound dressings and new perspectives, Int. J. Biol. Macromol. 173 (2021) 251.

DOI: 10.1016/j.ijbiomac.2021.01.100

Google Scholar

[7] S. Yao, X. Wang, X. Liu, R. Wang, C. Deng, F. Cui, Effects of ambient relative humidity and solvent properties on the electrospinning of pure hyaluronic acid nanofibers, J. Nanosci. Nanotechnol. 13 (2013) 4752-4758.

DOI: 10.1166/jnn.2013.7197

Google Scholar

[8] J.M.M. Pérez, J. Pascau, Image Processing with ImageJ, Packt Publishing Ltd, Birmingham, UK, (2013).

Google Scholar

[9] H.-W. Chen, M.-F. Lin, Characterization, Biocompatibility, and Optimization of Electrospun SF/PCL/CS Composite Nanofibers. Polymers. 12 (2020) 1439.

DOI: 10.3390/polym12071439

Google Scholar

[10] A. Haider, S. Haider, I-K. Kang, Comprehensive review summarizing effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology, Arab. J. Chem. 11(8) (2015) 1165-1188.

DOI: 10.1016/j.arabjc.2015.11.015

Google Scholar

[11] R. Uppal, G.N. Ramaswamy, C. Arnold, R. Goodband, Y. Wang, Hyaluronic acid nanofiber wound dressing-production, characterization, and in vivo behavior, J. Biomed. Mater. Res. 97B(1) (2011) 20-29.

DOI: 10.1002/jbm.b.31776

Google Scholar

[12] X. Wang, I.C. Um, D. Fang, A. Okamoto, B.S. Hsiao, B. Chu, Formation of water-resistant hyaluronic acid nanofibers by blowing-assisted electro-spinning and non-toxic post treatments, Polymer. 46(13) (2005) 4853-4867.

DOI: 10.1016/j.polymer.2005.03.058

Google Scholar