Effect of Carbon Nanoparticles on Properties of Polyetherimide Fibers

Article Preview

Abstract:

In the present work, fibers based on heat-resistant amorphous polyimide brand Ultem-1000 were prepared by melt extrusion. Vapor-grown carbon nanofibers (VGCFs) and single-wall carbon nanotubes (SWCNTs) were used to increase the mechanical characteristics of the polymer fibers. The fibers were characterized by scanning electron microscopy (SEM), thermophysical and mechanical tensile analysis. SEM study revealed very good distribution of the carbon nanofillers throughout the polyimide fiber volume. The mechanical testing of the unoriented nanocomposite fibers showed that the introduction of VGCFs or SWCNTs led to an increase in tensile strength and modulus. High-temperature drawing allows obtaining polyimide nanocomposite fibers with significantly increased mechanical properties (»300 MPa for strength and »4.6 GPa for modulus).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

381-386

Citation:

Online since:

September 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.J. Liaw, K.L. Wang, Y.C. Huang, K.R. Lee, J.Y. Lai, C.S. Ha, Advanced polyimide materials: syntheses, physical properties and applications, Prog. Polym. Sci. 37 (2012) 907-974.

DOI: 10.1016/j.progpolymsci.2012.02.005

Google Scholar

[2] Q.H. Zhang, M. Dai, M.X. Ding, D.J. Chen, L.X. Gao, Mechanical properties of BPDA-ODA polyimide fibers, Eur. Polym. J. 40 (2004) 2487-2493.

DOI: 10.1016/j.eurpolymj.2004.06.020

Google Scholar

[3] Z. Chunling, Z. Qiong, X. Yanhu, L. Guomin, L.Fangfang, Q. Xuepeng, J.Xiangling, G. Lianxun, Effect of draw ratio on the morphologies and properties of BPDA/PMDA/ODA polyimide fibers, Chem. Res. Chin. Univ., 30 (2014) 163—167.

DOI: 10.1007/s40242-014-3266-0

Google Scholar

[4] Q.-H. Zhang, J. Dong, D.-Z.n Wu, Advanced polyimide fibers, in: S. Yang (Ed) Advanced polyimide materials (synthesis, characterization and applications), Elsevier, Amsterdam, 2018, pp.67-92.

DOI: 10.1016/b978-0-12-812640-0.00002-0

Google Scholar

[5] J. Dong, C. Yin, W. Luo, Q. Zhang, Synthesis of organ-soluble copolyimides by one-step polymerization and fabrication of high performance fibers, J. Mater. Sci. 48 (2013) 7594–7602.

DOI: 10.1007/s10853-013-7576-2

Google Scholar

[6] J. Dong, C. Yin, X. Zhao, Y. Li, Q. Zhang, High strength polyimide fibers with functionalized grapheme, Polymer 4 (2013) 6415–6424.

DOI: 10.1016/j.polymer.2013.09.035

Google Scholar

[7] G.V. Vaganov, A.L. Didenko, E.M. Ivan'kova, E.N. Popova, V.Yu. Elokhovskii, A.V. Volkov, V.E. Yudin, Preparation and properties of a thermoplastic partially crystalline polyimide in the oriented state, Russ.J. Appl. Chem. 93 (2020) 72-79.

DOI: 10.1134/s1070427220010085

Google Scholar

[8] K. E. Perepelkin, Chemical fibres: Present and fiture, Fibre Chem. 32 (2000) 303-318.

Google Scholar

[9] C.C. Fay, J.A. Hinkley, T.L. Clair, D.C. Working, Mechanical properties of LaRCTM-IA and ULTEM® melt-extruded fibers and melt-pressed films, Adv. Perform. Mater. 5 (1998) 193− 200.

Google Scholar

[10] E. J. Siochi, D. C. Working, C. Park, P. T. Lillehei, J. H. Rouse, C. C. Topping, A.R. Bhattacharyya, S. Kumar, Melt processing of SWCNT-polyimide nanocomposite fibers, Comp., Part B. 35 (2004) 439−446.

DOI: 10.1016/j.compositesb.2003.09.007

Google Scholar

[11] K.D. Dorsey, P. Desai, A.S. Abhiraman, J.A. Hinkley, T.L. Clair, Structure and properties of melt-extruded laRC-IA (3,4'-ODA 4,4'-ODPA) polyimide fibers, J. Appl. Polym. Sci. 73 (1999) 73 1215−1222.

DOI: 10.1002/(sici)1097-4628(19990815)73:7<1215::aid-app15>3.0.co;2-1

Google Scholar

[12] M. Zhang, H. Niu, D. Wu, Polyimide fibers with high strength and high modulus: preparation, structures, properties, and applications, Macromol Rapid Commun. 1800141 (2018) 1−14.

DOI: 10.1002/marc.201800141

Google Scholar

[13] T. Yang, E. L. Han, X. D. Wang, D. Z. Wu, Surface decoration of polyimide fiber with carbon nanotubes and its application for mechanical enhancement of phosphoric acid-based geopolymers, Appl. Surf. Sci. 416 (2017) 200−212.

DOI: 10.1016/j.apsusc.2017.04.166

Google Scholar

[14] E.L. Han, W. Yue, C. Xue, G.P. Shang, W.X. Yu, H.Q. Niu, S.L. Qi, D.Z. Wu, R.G. Jin, Consecutive large-scale fabrication of surface-silvered polyimide fibers via an integrated direct ion-exchange self-metallization strategy, ACS Appl. Mater Inter. 5 (2013) 4293-4301.

DOI: 10.1021/am4005094

Google Scholar

[15] Z. Ounaies, C. Park, K.E. Wise, E.J. Siochi, J.S. Harrison, Electrical properties of carbon nanotube reinforced polyimide composites, Compos. sci. technol. 63 (2003) 1637−1646.

DOI: 10.1016/s0266-3538(03)00067-8

Google Scholar

[16] T. Ogasawara, Y. Ishida, T. Ishikawa, R. Yokota, Characterization of multi-walled carbon nanotube/phenylethynyl terminated polyimide composites, Composites, Part A. 35 (2004) 67−74.

DOI: 10.1016/j.compositesa.2003.09.003

Google Scholar

[17] X. Jiang, Y. Bin, M. Matsuo, Electrical and mechanical properties of polyimide−carbon nanotubes composites fabricated by in situ polymerization, Polymer 46 (2005) 7418−7424.

DOI: 10.1016/j.polymer.2005.05.127

Google Scholar

[18] B. Zhu, S. Xie, Z. Xu, Y. Xu, Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites. Compos. Sci. Technol. 66 (2006) 548−554.

DOI: 10.1016/j.compscitech.2005.05.038

Google Scholar

[19] H.H. So, J.W. Cho, N.G. Sahoo, Effect of carbon nanotubes on mechanical and electrical properties of polyimide/carbon nanotubes nanocomposites, Eur. Polym. J. 43 (2007) 3750−3756.

DOI: 10.1016/j.eurpolymj.2007.06.025

Google Scholar

[20] S.-M. Yuen, C.-C. M. Ma, Y.-Y. Lin, H.-C. Kuan, Preparation, morphology and properties of acid and amine modified multiwalled carbon nanotube/polyimide composite. Compos. Sci. Technol. 67 (2007) 2564−2573.

DOI: 10.1016/j.compscitech.2006.12.006

Google Scholar

[21] E.M. Ivan'kova, G. V. Vaganov, E. N. Popova, V.Yu Elokhovskiy, I.A. Kasatkin, Structure-property relationship of polyetherimide fibers filled with carbon nanoparticles, ACS Omega. 5 (2020) 10680–10686.

DOI: 10.1021/acsomega.9b04102

Google Scholar