[1]
Kurdanova Zh.I., Shakhmurzova K.T., Baikaziev A.E., Mamkhegov R.M., Zhansitov A.A., Khashirova S.Yu. On synthesis of polyphenylene sulfide and copolymers based on it by reaction of non-equilibrium polycondensation. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 62 (2019) 4-14.
DOI: 10.6060/ivkkt0196203.5830
Google Scholar
[2]
A.S. Shabaev, S.Yu. Khashirova, R.M. Mamkhegov, M.T. Bashorov, B.I. Kunizhev, A.Kh. Malamatov, The effect of heat treatment regimes of polyphenylene sulfides on their thermal properties, XV International Scientific and Practical Conference New Polymer Composite Materials,. (2019) 72-77.
DOI: 10.4028/www.scientific.net/kem.816.72
Google Scholar
[3]
A.Kh. Salamov, K.T. Shakhmurzova, Zh.I. Kurdanova, A.E. Baykaziev, S.Yu. Khashirova, M.A. Yalkhoroeva, Z.Kh. Sultygova, Polyphenylene sulfide as a super-structural polymer, Proceedings of the Kabardino-Balkarian State University.. 7 (2017) 56-58.
Google Scholar
[4]
A.S. Rahate, K.R. Nemade, S.A. Waghuley, Polyphenylene sulfide (PPS): state of the art and applications, Rev. Chem. Eng. 29 (2013) 471-489.
DOI: 10.1515/revce-2012-0021
Google Scholar
[5]
E.V. Kalugina, Polyphenylene sulfide market trends in the world and in Russia, Eurasian chemical market.10 (2013) 24-30.
Google Scholar
[6]
M. Mrazova, Advanced composite materials of the future in aerospace industry. Carbon fiber fabric reinforced PPS laminates: Influence of temperature on mechanical properties and behavior, Adv. Polym. Technol. 30 (2011) 80-95.
DOI: 10.1002/adv.20239
Google Scholar
[7]
J. Cao, L. Chen, Effect of thermal cycling on carbon fiber-reinforced PPS composites, Polym. Compos. 26 (2005) 713-716.
DOI: 10.1002/pc.20148
Google Scholar
[8]
B. Vieille, J. Aucher, L. Taleb, Comparative study of the behavior of woven-ply reinforced thermoplastic or thermosetting laminates under severe environmental conditions, Mater. Design. 35 (2012) 707-719.
DOI: 10.1016/j.matdes.2011.10.037
Google Scholar
[9]
A.V. Samoryadov, E.V. Kalugina, V.V. Bitt, Glass-filled polyphenylene sulfides TERMORAN™: physical, mechanical and thermal properties, Plastics. 7-8 (2019) 52-56.
DOI: 10.35164/0554-2901-2019-7-8-52-56
Google Scholar
[10]
M.I. Vavilova, A.O. Kurnosov, D.A. Melnikov, Statistical processing of the results of the final control of the fiberglass prepreg to assess the stability of its production, VIAM Proceedings. 9 (2017) 10-14.
Google Scholar
[11]
K.I. Donetskiy, R.Yu. Karavaev, A.E. Raskutin, N.N. Panina, Properties of carbon and fiberglass based on woven preforms, Aviation materials and technologies. 4 (2016) 54-59.
Google Scholar
[12]
R.M. Mamkhegov, M.M. Murzakanova, Z.V. Dzhandigova, L.S. Murzamuratova, A.T. Tsurova, S.Y. Khashirova, Research of the Impact of Catalysts, Temperature and Pressure on Polyphenylenesulfide Synthesis, Key Engineering Materials. 816 (2016) 14–18.
DOI: 10.4028/www.scientific.net/kem.816.14
Google Scholar
[13]
D. Zhang, H. Yao, D. Zhou, L. Dai, J. Zhang, S. Yuan, Synthesis, characteristics and adsorption properties of polyphenylene sulfide based strong acid ion exchange fiber, Polymers for Advanced Technologies. 25 (2014) 1590-1595.
DOI: 10.1002/pat.3407
Google Scholar
[14]
M. Aurilia, L. Sorrentino, L. Sanguigno, S. Iannace, Nanofilled polyethersulfone as matrix for continuous glass fibers composites, Mech. Properties and Solvent Resistance Advances in Polymer Technol. 29 (2010) 146-160.
DOI: 10.1002/adv.20187
Google Scholar
[15]
M. Garcia, J.I. Eguiazaball, J. Nazabal, Processability, morphology and mechanical properties of glass fiber reinforced poly(ether sulfone) modified by a liquid crystalline copolyester, Journal of Polymer composites. 24 (2003) 686-96.
DOI: 10.1002/pc.10062
Google Scholar
[16]
B. Ashrafi, A.M. Diez-Pascual, L. Johnson, M. Genest, S. Hind, Y. Martinez-Rubi, J.M. Gonzalez- Dominguez, M.T. Martinez, B. Simard, M.A. Gómez-Fatou, Processing and properties of PEEK/glass fiber laminates: Effect of addition of single-walled carbon nanotubes, Compos. Part A. 43 (2012) 1267-1279.
DOI: 10.1016/j.compositesa.2012.02.022
Google Scholar
[17]
J.Yang, Q. Zhang, K. Zhang, X. Wang, G. Zhang, Reinforced composite material based on polyphenylene sulfide and a method for its production, CN Patent 103665867 (2006).
Google Scholar
[18]
G.Wang, X. Chen, J. Yang, Q. Wang, High temperature resistant high strength reactive reinforced and hardened composite based on polyphenylene sulfide, CN Patent 102942790 (2012).
Google Scholar
[19]
Sh. Zhang, G. Huang, X. Wang, Y. Huang, J. Yang, G. Li, Effect of air plasma treatment on the mechanical properties of polyphenylene sulfide/glass fiber cloth composites, Journal of Reinforced Plastics and Composites. 32 (2013) 786-793.
DOI: 10.1177/0731684412470727
Google Scholar
[20]
M. Guo, F. Meng, G. Li, J. Luo, Y. Ma, X. Xia, Effective Antibacterial Glass Fiber Membrane Prepared by Plasma-Enhanced Chemical Grafting, ACS Omega. (2013) 1-6.
DOI: 10.1021/acsomega.9b02403
Google Scholar
[21]
V. Cech, A. Knob, H.-A. Hosein, A. Babik, P. Lepcio, F. Ondreas, L.T. Drzal, Enhanced interfacial adhesion of glass fibers by tetravinylsilane plasma modification, Composites Part A: Applied Science and Manufacturing. 58 (2014) 84–89.
DOI: 10.1016/j.compositesa.2013.12.003
Google Scholar
[22]
X. Jin, W. Wang, C. Xiao, T. Lin, L. Bian, P. Hauser, Improvement of coating durability, interfacial adhesion and compressive strength of UHMWPE fiber/epoxy composites through plasma pre-treatment and polypyrrole coating, Composites Science and Technology. 128 (2016) 169–175.
DOI: 10.1016/j.compscitech.2016.03.026
Google Scholar
[23]
G. Luo, W. Li, W. Liang, G. Liu, Y. Ma, Y. Niu, G. Li, Coupling effects of glass fiber treatment and matrix modification on the interfacial microstructures and the enhanced mechanical properties of glass fiber/polypropylene composites, Composites Part B: Engineering. 111 (2017) 190–199.
DOI: 10.1016/j.compositesb.2016.12.016
Google Scholar
[24]
P. Kiss, W. Stadlbauer, C. Burgstaller, V.-M. Archodoulaki, Development of High-Performance Glass Fibre-Polypropylene Composite Laminates: Effect of Fibre Sizing Type and Coupling Agent Concentration on Mechanical Properties, Composites Part A: Applied Science and Manufacturing. (2020) 1- 11.
DOI: 10.1016/j.compositesa.2020.106056
Google Scholar
[25]
S.Yu. Khashirova, A.A. Beev, J.A. Beeva. A method of obtaining finished glass fibers and composite materials based on them. RU Patent 2710559. (2019).
Google Scholar
[26]
P.G. Pape, Adhesion Promoters, Applied Plastics Engineering Handbook. (2011) 503–517.
DOI: 10.1016/b978-1-4377-3514-7.10029-7
Google Scholar
[27]
D.A. Soules, R.L. Hagenson, Résines de polysulfures d'arylène renforcés avec des fibres de verre. EР Patent 0524343. (1991).
Google Scholar
[28]
Y. Zhang, Long glass fiber reinforced thermal insulation polyphenylene sulfide composite material and preparation method thereof, СN Patent 102898835 (2011).
Google Scholar
[29]
Y. Zhang, Zh. Zhang, J. Zhang, F. Ye, J. Luo, L. Han, Glass fiber reinforced polyphenylene sulfide resin composite material, CN Patent 101864169B (2009).
Google Scholar
[30]
J. Wang, T. Zhang, J. Zhang, Y. Niu, Zh. Liu, Wear-resistant low-floating fiber glass fiber-reinforced polyphenylene sulfide composite material and preparation method thereof. CN Patent 106380846A. (2016).
Google Scholar
[31]
L. Gonon, B. Chabert, A. Bernard, D. Van Hoyweghen, J.F. Gérard, New Coupling Agents as Adhesion Promoters at the Poly(Phenylene Sulfide)/Glass Interface-Studies with Micro and Macro Composites, The Journal of Adhesion. 61 (2012) 271-292.
DOI: 10.1080/00218469708010526
Google Scholar
[32]
J. Jang, H.S. Kim, Performance improvement of glass fiber-poly(phenylene sulfide) composite, Journal of Applied Polymer Science. 60 (1996) Р. 2297–2306.
DOI: 10.1002/(sici)1097-4628(19960620)60:12<2297::aid-app29>3.0.co;2-2
Google Scholar
[33]
D. Hartman, L. Peters, J. Antle, Sizing for high performance glass fibers and composite materials incorporating same. US Patent 20060204763 (2006).
Google Scholar
[34]
W. Piret, N. Masson, Sizing composition for thermoplastic reinforcement. WO Patent 2004110948. (2004).
Google Scholar
[35]
P. Willie, M. Nadia, Sizing Composition for Fiberglass. RU Patent 26225672012 (2012).
Google Scholar
[36]
S.P. Subadra, S. Yousef, P. Griskevicius, V. Makarevicius, High-performance fiberglass/epoxy reinforced by functionalized CNTs for vehicle applications with less fuel consumption and greenhouse gas emissions, Polymer Testing. 86 (2020) 1-10.
DOI: 10.1016/j.polymertesting.2020.106480
Google Scholar
[37]
H. Ebrahimnezhad-Khaljiri, R. Eslami-Farsani, H. Khosravi, A. Shahrabi-Farahani, Improving the Flexural Properties of E-Glass Fibers/Epoxy Isogrid Stiffened Composites through Addition of 3-Glycidoxypropyltrimethoxysilane Functionalized Nanoclay, Silicon. (2019) 1-9.
DOI: 10.1007/s12633-019-00346-8
Google Scholar
[38]
H. Khosravi, R. Eslami-Farsani, On the mechanical characterizations of unidirectional basalt fiber/epoxy laminated composites with 3-glycidoxypropyltrimethoxysilane functionalized multi-walled carbon nanotubes–enhanced matrix, Journal of Reinforced Plastics and Composites. 35 (2015) 421–434.
DOI: 10.1177/0731684415619493
Google Scholar
[39]
K. Sever, M. Sarikanat, Y. Seki, I.H. Tavman, Concentration effect of γ-glycidoxypropyltrimethoxysilane on the mechanical properties of glass fiber-epoxy composites, Polymer Composites. 30 (2009) 1251–1257.
DOI: 10.1002/pc.20686
Google Scholar
[40]
Z. Liu, Y.Q. Wu, X.J. Wang, S.R. Long, J. Yang, Effects of the Coupling Agent on the Mechanical Properties of Long Glass Fiber Reinforced Polyphenylene Sulfide Composites, Materials Science Forum. 815 (2015) 509–514.
DOI: 10.4028/www.scientific.net/msf.815.509
Google Scholar
[41]
A.F. Hamzah, Study of fatigue behavior of composite materials with the basis of polyphenylene sulfide (PPS) reinforced with glass fiber and carbon, Int J Eng Sci. 3 (2013) 467–75.
Google Scholar
[42]
Y.Q. Xu, B.P. Zhang, X.M. Bao Study on the mechanical properties of polyphenylene sulfide and glass fiber reinforced composites, Acta Mater Compos Sin. (1993) 29–35.
Google Scholar
[43]
L. Zhao, Y. Yu, H. Huang, J. Peng, J. Sun, X. Yin, L. Wang, High-performance polyphenylene sulfide composites with ultra-high content of glass fiber fabrics, Composites Part B: Engineering. (2019) 1-10.
DOI: 10.1016/j.compositesb.2019.05.001
Google Scholar
[44]
S. Sanchez, E. Fàbregas, New antibodies immobilization system into a graphitepolysulfone membrane for amperometric immunosensors, Biosensors and Bioelectronics. 22 (2007) 965-972.
DOI: 10.1016/j.bios.2006.03.022
Google Scholar
[45]
J.Y. Wang, Y.Y. Xu, L.P. Zhu, J.H. Li, B.K. Zhu, Amphiphilic ABA copolymers used for surface modification of polysulfone membranes, Part 1: Molecular design, synthesis, and characterization, Polymer. 49 (2008) 3256-3264.
DOI: 10.1016/j.polymer.2008.05.033
Google Scholar
[46]
Q. Huang, D. Paul, G. Seibig, Advances in solvent-free manufacturing of polymer membranes, Membrane Technology. 140 (2001) 6-9.
DOI: 10.1016/s0958-2118(01)80394-3
Google Scholar
[47]
H.-H. Ren, D.-X. Xu, T. Yu, J.-C. Yang, G. Zhang, X.-J. Wang, J. Yang, Effect of polyphenylene sulfide containing amino unit on thermal and mechanical properties of polyphenylene sulfide/glass fiber composites, Journal of Applied Polymer Science. 135 (2017) 1-10.
DOI: 10.1002/app.45804
Google Scholar
[48]
Z. Liu, S. Zhang, G. Huang, K. Zhang, X. Wang, G. Zhang, J. Yang, Effects of polyarylene sulfide sulfone on the mechanical properties of glass fiber cloth-reinforced polyphenylene sulfide composites, High Performance Polymers. 27 (2015) 145–152.
DOI: 10.1177/0954008314541789
Google Scholar
[49]
V. Cech, A. Knob, H.-A. Hosein, A. Babik, P. Lepcio, F. Ondreas, L. Drzal, Enhanced interfacial adhesion of glass fibers by tetravinylsilane plasma modification, Composites Part A: Applied Science and Manufacturing. 58 (2014) 84–89.
DOI: 10.1016/j.compositesa.2013.12.003
Google Scholar
[50]
V. Cech, A. Marek, A. Knob, J. Valter, M. Branecky, P. Plihal, J. Vyskocil, Continuous surface modification of glass fibers in a roll-to-roll plasma-enhanced CVD reactor for glass fiber/polyester composites, Composites Part A: Applied Science and Manufacturing. 121 (2019) 244-253.
DOI: 10.1016/j.compositesa.2019.03.036
Google Scholar
[51]
I.I. Karimullin, A.E. Karnoukhov, E.A. Skidchenko, L.Yu. Makhotkina, E.F. Voznesensky, A.V. Trofimov, Research of the effect of radio-frequency capacitive plasma treatment in the medium of hydrocarbon gas on properties of the surface of glass fibers, IOP Conf. Series: Journal of Physics: Conf. Series. (2019) 1-4.
DOI: 10.1088/1742-6596/1328/1/012040
Google Scholar
[52]
R. Hong, D. Xu, X. Wang, Sh. Long, G. Zhang, Jie Yang, Effect of air dielectric barrier discharge plasma treatment on the adhesion property of sanded polyphenylene sulfide, High Performance Polymers. (2015) 1–10.
DOI: 10.1177/0954008315593159
Google Scholar
[53]
K.-B. Lim, D.-C. Lee, Surface modification of glass and glass fibers by plasma surface treatment, Surface and Interface Analysis. 36 (2004) 254–258.
DOI: 10.1002/sia.1682
Google Scholar
[54]
S. Zhang, G. Huang, X. Wang, Y. Huang, J. Yang, G. Li, Effect of air plasma treatment on the mechanical properties of polyphenylene sulfide/glass fiber cloth composites, Journal of Reinforced Plastics and Composites. 32 (2013) 786–793.
DOI: 10.1177/0731684412470727
Google Scholar
[55]
N. Anagreh, L. Dorn, C. Bilke-Krause, Low-pressure plasma pretreatment of polyphenylene sulfide (PPS) surfaces for adhesive bonding, International Journal of Adhesion and Adhesives. 28 (2008) 16–22.
DOI: 10.1016/j.ijadhadh.2007.03.003
Google Scholar