Investigation of Mechanical Behavior of Layered Metal-Rubber Composites Based on Steel and Aluminum Alloy

Article Preview

Abstract:

Metal-polymer composites are advanced materials for the aerospace, automotive and railway industry where details and elements of construction are affected by impact, cyclic and vibration loads. In the present work layered composites based on steel, aluminum alloy and rubber as intermediate layers were obtained by cold and hot bonding using adhesives. Adhesive lap-shear bond strength of layered composites fabricated by various techniques was determined using tensile shear test. To evaluate the mechanical behavior of layered metal-rubber composites under simulated operational conditions static, dynamic and cyclic, three points bending tests were carried out. The results of mechanical tests of these composites indicated that hot bonding is the most preferred fabrication method for the formation of increased mechanical characteristics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

87-94

Citation:

Online since:

October 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.N. Chawla, Composite Materials Science and Engineering. Fourth edition, The University of Alabama at Birmingham, Birmingham, USA, Department of Materials Science and Engineering, (2019).

Google Scholar

[2] F. Mett'yuz, R. Rolings, Kompozitnye materialy. Mekhanika i tekhnologiya, Tekhnosfera, Moscow, (2004).

Google Scholar

[3] M. L. Kerber, Polimernye kompozitsionnye materialy: struktura, svoistva, tekhnologiya, TsOP Professiya, Saint-Petersburg, (2014).

Google Scholar

[4] S.L. Bazhenov, Mekhanika i tekhnologii kompozitsionnykh materialov: Nauchnoe izdanie, Izdatel'skii dom «Intellekt», Dolgoprudnyi, (2014).

Google Scholar

[5] E.N. Kablov, Innovatsionnye razrabotki FGUP «VIAM» GNTs RF po realizatsii «Strategicheskikh napravlenii razvitiya materialov i tekhnologii ikh pererabotki na period do 2030 goda», Aviatsionnye materialy i tekhnologii 1 (34) (2015) pp.3-33.

Google Scholar

[6] S. Meure, R. J. Varley, Dong Yang Wu, Sh. Mayo, K. Nairn, S. Furman, Furman Confirmation of the healing mechanism in a mendable EMAA-epoxy resin, Eur. Polym. J. 48 (2012) p.524–531.

DOI: 10.1016/j.eurpolymj.2011.11.021

Google Scholar

[7] V.D. Cherkasov, V.I. Solomatov, N.E. Fomin, Uprugie i dempfiruyushchie svoistva konstruktsionnykh metallicheskikh materialov. Vibropogloshchayushchie kompozitsionnye materialy, Izdatel'stvo mordovskogo universiteta, Saransk, (2001).

Google Scholar

[8] S.A. Chernikov, S. Samer, Dempfirovanie rezonansnykh kolebanii giroskopicheskikh sistem dinamicheskim gasitelem peremennoi struktury, Vestnik MGTU im. N.E. Baumana. Ser. Priborostroenie 4 (2006) p.111 – 125.

Google Scholar

[9] C.W. Bert, Composite materials: a survey of damping capacity of fiber reinforced composites, Damping Application for vibration control. ASME AMD 38 (1980) pp.53-63.

Google Scholar

[10] M.N. Kolodkin, A.A. Zaitsev, Perspektivnye konstruktsii puti v metropolitene, Transport Rossiiskoi federatsii 40-41 (2012) pp.74-76.

Google Scholar

[11] A.F. Verbilov, V.V. Kovalev, S. A. Ul'rikh, Nelineinye kolebatel'nye protsessy v dinamike gusenichnogo dvizhitelya s rezinometallicheskimi sharnirnymi soedineniyami, Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk 6 (2018) p.243–247.

Google Scholar

[12] E.G. Kurzina, A.G. Kolmakov, Yu.N. Aksenov, A.M. Kurzina, A.Yu. Bogachev, A.V. Semak, Issledovanie uprugo-gisterezisnykh svoistv dempfiruyushchikh kompozitsionnykh materialov dlya zheleznodorozhnogo transporta pri nizkikh temperaturakh v usloviyakh staticheskogo i dinamicheskogo nagruzheniya, Deformatsiya i razrushenie materialov 3 (2019) pp.43-48.

Google Scholar

[13] T. Sinmazçelik, E. Avcu, M. Özgür Bora, O. A. Çoban, Fibre metal laminates, background, bonding types and applied test methods. Mater. Des. 32 (2011) p.3671–3685.

DOI: 10.1016/j.matdes.2011.03.011

Google Scholar

[14] M. Chausov, A. Pylypenko, V. Berezin, K. Volyanska, P. Maruschak, V. Hutsaylyuk, L. Markashova, S. Nedoseka, & A. Menou, Influence of dynamic non-equilibrium processes on strength and plasticity of materials of transportation systems. Transport 33 (2018) pp.231-241.

DOI: 10.3846/16484142.2017.1301549

Google Scholar

[15] V. Hutsaylyuk, M. Chausov, V. Berezin, A. Pylypenko, K. Volyanska, Influence of dissipative structures formed by impulsed loads on the processes of deformation and fracture, Key Eng. Mater. 577-578 (2014) pp.273-276.

DOI: 10.4028/www.scientific.net/kem.577-578.273

Google Scholar

[16] J.D. Embury, N.J. Petch, A.E. Wraith, E.S. Wright, The fracture of mild steel laminates, Trans. Metall. Soc. AIME 239 (1967) p.114–118.

Google Scholar

[17] K. Babinsky, S. Primig, W. Knabl, A. Lorich, R. Stickler, H. Clemens, Fracture Behavior and Delamination Toughening of Molybdenum in Charpy Impact Tests, JOM. 68 (11) (2016) pp.2854-2863.

DOI: 10.1007/s11837-016-2075-y

Google Scholar

[18] S.V. Kuteneva, S.V. Gladkovsky, D.A. Dvoynikov, S.N. Sergeev, Microstructure and brittle fracture resistance of layered steel composites produced by explosion welding and pack rolling followed by heat treatment, Letters on Materials 9 (4) (2019) pp.442-446.

DOI: 10.22226/2410-3535-2019-4-442-446

Google Scholar