Hydrogen Diffusion Influence on the Stabilizing Phases Behavior in the Ti-6Al-4V Alloy

Article Preview

Abstract:

For obtaining a unique microstructure in Ti-6Al-4V, hydrogen is utilized as a temporary alloying element; therefore, the mechanism of hydrogen diffusion in α and β phases should be understood. In this study, the electrochemical hydrogenation was applied to the half-length of thin titanium rods, and the diffusion annealing heat treatment was implemented at different temperatures. The hydrogen diffusion coefficient of α phase (Dα) and the hydrogen diffusion coefficient of β phase (Dβ) was determined by employing Abaqus software and C# program for three different homogeneous microstructures. The obtained results showed that Dβ increases, and Dα decreases when the hydrogen concentration in β phase increases. Furthermore, it was observed that each microstructure has a specific temperature in which the maximum hydrogen amount is absorbed. The hydrogen uptake depends more on the volume fraction of β phase than the volume fraction of α phase, which is considered an obstacle to hydrogen diffusion in this alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-110

Citation:

Online since:

November 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Leyens, M. Peters: John Wiley & Sons (2006).

Google Scholar

[2] N. Eswara Prasad, R. J. H. Wanhill, Springer, (2017).

Google Scholar

[3] M. K. Mohsun, Mater. Sci. Forum, Vol. 986 (2020), pp.24-32.

Google Scholar

[4] F. H. Froes, O. N. Senkov, J. I. Qazi, Int. Mater. Rev., Vol. 49 (2004), pp.227-245.

Google Scholar

[5] L. Miaoquan, Z. Weifu, Z. Tangkui, H. Hongliang, L. Zhiqiang, Rare. Metal. Mat. Eng., Vol.39 (2010), pp.1-5.

DOI: 10.1016/s1875-5372(10)60071-9

Google Scholar

[6] V. Macin, P. Schmidt, H-J. Christ, (2014), pp.669-676.

Google Scholar

[7] V. Macin, H-J. Christ, Int. J. Hydrogen Energy, Vol. 40 (2015), p.16878–16891.

Google Scholar

[8] D. H. Kohn, P. Ducheyne, J. Mater. Sci., Vol. 26 (1991), p.534–544.

Google Scholar

[9] P. Schmidt, H-J. Christ, Beijing: Science Press, (2011), pp.508-513.

Google Scholar

[10] M. K. Mohsun, Mater. Sci. Forum, Vol. 986 (2020), pp.33-40.

Google Scholar

[11] H-J. Christ, S. Schroers, F. H. S. dos Santos, Def. Diff. Forum, Vol. 237 (2005), pp.340-345.

Google Scholar

[12] H-J. Christ, P. Schmidt, Def. Diff. Forum, Vol.289 (2009), pp.87-94.

Google Scholar

[13] C. Yexin, Rare Metal. Mater. Eng., Vol. 44 (2015), pp.553-556.

Google Scholar

[14] J. L. Waisman, G. Sines, L. B. Robinson, Metall. Tran., Vol. 4 (1973), pp.291-302.

Google Scholar

[15] P. Schmidt, H-J. Christ, Int. J. Mater. Res., Vol. 99 (2008), pp.1098-1106.

Google Scholar

[16] P. Schmidt, H-J. Christ, Int. J. Mater. Res., Vol. 99 (2008), pp.1098-1106.

Google Scholar

[17] J.J. Kearns, J. Nuclear Mater., Vol. 43 (1972), pp.330-338.

Google Scholar

[18] V. Macin, H-J. Christ, In: Proceedings of the light mat. (2013), pp.1-6.

Google Scholar

[19] P.Schmidt, V. Macin, H-J. Christ, Hydrogen-materials interactions, ASME (2014), pp.661-668.

Google Scholar

[20] H. J. Liu, L. Zhou, P. Liu, Q.W. Liu, Inter. J. Hydrogen. Energy, Vol. 34 (2009), pp.9596-9602.

Google Scholar

[21] K. Prüßner, M. Decker, H-J. Christ, Adv. Eng. Mater., Vol. 4 (2002), pp.308-312.

Google Scholar

[22] H-J. Christ, M. Decker, S. Zeitler, Metall. Mater. Tran. A., Vol. 31 (2000), pp.1507-1517.

Google Scholar

[23] R. J. Wasilewski, G. L. Kehl, Metall., Vol. 50 (1954), pp.225-230.

Google Scholar

[24] J. Cermak, L. Kral, Acta Materialia, Vol. 56 (2008), pp.2677-2686.

Google Scholar