Effects of Heat Dissipation from Friction Stir Welding to Microstructures of Semi-Solid Cast 6063 Al Alloy

Article Preview

Abstract:

In this work, temperature distribution in semi-solid cast 6063 aluminum alloy workpieces during friction stir welding (FSW) was determined by finite element analysis (FEA). The FEA results were validated by comparing them with the measurement results from thermocouples. The maximum temperature of 534.2oC was predicted at the workpiece surface contacted with the tool shoulder. The temperature profiles obtained from FEA were used to explain microstructural changes during FSW. It was observed that relatively high temperature made α-Al grains became elongated and Mg2Si intermatalics turned into a rod-like morphology with round edges.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

70-75

Citation:

Online since:

November 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.S. Mishra, Z.Y. Ma, Sci. Eng. R Rep. 50 (2005) pp.1-78.

Google Scholar

[2] A. Heidarzadeh, T. Saeid, V. Klemm, A. Chabok, Y. Pei, Mater. Des. 162 (2019) pp.185-197.

Google Scholar

[3] C. Zhanga, L.Cui, Y.Liua, C. Liua, H. Li, J. Mater. Sci. Technol. 34 (2018) pp.756-766.

Google Scholar

[4] N. Dialami, M. Cervera, M. Chiumenti, Eur. j. mech. A-solids. 80 (2020) 103912.

Google Scholar

[5] V.K. Parikh, A.D. Badgujar, N.D. Ghetiya, Mater. Manuf. Process. 34 (2018) pp.123-146.

Google Scholar

[6] S. Sitthipong, P. Towatana, C. Meengam, S. Chainarong, P.Muangjunburee, Eng. J. 22 (2018) pp.51-64.

DOI: 10.4186/ej.2018.22.3.51

Google Scholar

[7] L. Kumar, K.U. Yazar, S. Pramanik, Mater. Sci. Eng. A. 754 (2019) pp.400-410.

Google Scholar

[8] M.H. Mir, B.T. Hassan, J. Nima, Appl. Therm. Eng. 108 (2016) pp.751-763.

Google Scholar

[9] M. Zhai, C. Wu, H. Su, J. Manuf. Process. 59 (2020) pp.98-112.

Google Scholar

[10] W. Zhao, C.S. Wu, H. Su, J. Manuf. Process. 56 (2020) pp.967-980.

Google Scholar

[11] V. Preethi, A.D. Das, Mater. Today Proc. 37(2) (2021) pp.723-727.

Google Scholar

[12] P. Gulati, D.K. Shukla, A. Gupta, Mater. Today Proc. 4(2) (2017) pp.1005-1012.

Google Scholar

[13] Y. Mao, Y. Ni, X. Xiao, D. Qin, L. Fu, J. Manuf. Process. 60 (2020) pp.356-365.

Google Scholar

[14] J. Wannasin, R. Canyook, S. Wisutmethangoon, M.C. Flemings, Acta Mater. 61 (2013) 3897–3903.

DOI: 10.1016/j.actamat.2013.03.029

Google Scholar

[15] C. Meengam and K. Sillapasa, J. Manuf. Mater. Process. 4(123) (2020) pp.1-20.

Google Scholar

[16] B. Meyghani, M. Awang, C.S. Wu, J. Adv. Join. Process. 9 (2020) 100007.

Google Scholar

[17] P. Jedrasiak, H.R. Shercliff, J. Mater. Process. Technol. 263 (2019) 207-222.

Google Scholar

[18] V. Karami, B.M. Dariani, R. Hashemi, Cirp j. manuf. sci. technol. 32 (2021) pp.437-446.

Google Scholar

[19] S. Verma, Meenu, J.P. Misra, Mater. Today. Proc. 4(2) (2017) pp.1350-1356.

Google Scholar

[20] H.H. Jadav, V.Badheka, D.K. Sharma, G. Upadhyay, Mater. Today. Proc. 43(1)(2021) pp.84-92.

Google Scholar