Fabrication and Characterization of Cellulose Acetate/Organo-Montmorillonite Composite Membrane for Ion Adsorption

Article Preview

Abstract:

This study presents the results of modifications done to cellulose acetate (CA) membranes intended for filtration purposes using organo-montmorillonite (O-MMT) clay. The researchers incorporated O-MMT with CA to synthesize composite CA/O-MMT membranes via hand casting. The produced membranes were then characterized to determine the effect of O-MMT of varying % wt. concentrations to its surface morphology and wettability. Morphology of the membranes were observed under a Scanning Electron Microscope (SEM), while its wettability was accounted for by subjecting the samples to contact angle and porometer analysis. SEM images revealed that the presence of O-MMT generally affects the membrane’s surface roughness while the pore size test results show that increasing the concentration of O-MMT leads to a larger average pore size. Conductivity test data suggest that though becoming less hydrophilic, the modified membranes still hold efficient in removing the salt ions from the solution and that the amount of O-MMT concentration present in the CA/O-MMT membranes is the main determining factor behind its efficacy for ion adsorption.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

179-185

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Mansoori, R. Davarnejad, T. Matsuura, & A.F. Ismail in: Membranes based on non-synthetic (natural) polymers for waste treatment, Polymer Testing (2020, February 3).

DOI: 10.1016/j.polymertesting.2020.106381

Google Scholar

[2] Water Safety and Quality, World Health Organization, (2019, September 25) www.who.int./water/_sanitation_health/water-quality/en/.

Google Scholar

[3] Water Treatment, Water Sanitation, Water sanitation, World Health Organization, page 71, https://www.who.int/water _sanitation_health/hygiene/omlinkingchap6.pdf.

DOI: 10.2471/blt.21.287137

Google Scholar

[4] M. Mulder in: Basic Principles of Membrane Technology, Kluwer Academic Publishers, London (1996).

Google Scholar

[5] R. Mallada & M. Menedez in: Inorganic Membranes Membranes, Synthesis, Characterization and Applications, Elsevier: Amsterdam, The Netherlands (2008).

Google Scholar

[6] Y. Nishio in: Material functionalization of cellulose and related polysaccharides via diverse microcompositions, Advances in Polymer Science, vol. 205, no. 1, pp.97-151 (2006).

DOI: 10.1007/12_095

Google Scholar

[7] Membrane Filtration, Minnesota Water Works Operations Manual, Chapter 19 (2009).

Google Scholar

[8] S.W. Kim, S.O. Han, I.N. Sim, J.Y. Cheon & W.H. Park in: Fabrication and Characterization of Cellulose Acetate/Montmorillonite Composite Nanofibers by Electrispinning, Journal of Nanomaterials (2015). http://dx.doi.org/10.1155/2015/275230.

DOI: 10.1155/2015/275230

Google Scholar

[9] N. Ghaemi, S.S. Madaeni, A. Alizadeh, & H.Rajabi in: Preparation, characterization and performance of polyether sulfone/organically modified montmorillonite nanocomposite membranes in removal of pesticides, Journal of Membrane Science 382, pp.135-147 (2011).

DOI: 10.1016/j.memsci.2011.08.004

Google Scholar

[10] N. Ghaemi, S.S. Madaeni, A. Alizadeh, & P. Daraei in: Fabrication of cellulose acetate/sodium dodecyl sulfate nanofiltration membrane: characterization and performance in rejection of pesticides, Desalination 290, pp.99-106 (2011).

DOI: 10.1016/j.desal.2012.01.013

Google Scholar

[11] Goosen, A. Van Haute in: The Influence of Mineral Fillers on the Membrane Properties of High Flux Asymmetric Cellulose Acetate Reverse Osmosis Membranes, Desalination, 18, pp.203-214 (1976).

DOI: 10.1016/s0011-9164(00)84102-8

Google Scholar

[12] Y. Wang, L. Yang, G. Luo, Y. Dai, Preparation of cellulose acetate membrane filled with metal oxide particles for the pervaporation separation of methanol/methyl tert-butyl ether mixtures, Chemical Engineering Journal 146 pp.6-10 (2009).

DOI: 10.1016/j.cej.2008.05.009

Google Scholar

[13] D.S. Tong, C.H. Zhou, Y. Lu, H.Y. Yu, G.F. Zhang, & W.H. Yu in: Adsorption of acid red G dye on octadecyl trimethylammonium montmorillonite, Applied Clay Science 50, pp.427-431.

DOI: 10.1016/j.clay.2010.08.018

Google Scholar

[14] C.H. Zhou, D. Zhang, D. S. Tong, L.M. Wu, W.H. Yu, & S. Ismadji in: Paper-like composites of cellulose acetate-organo-montmorillonite for removal of hazardous anionic dye in water. Chemical Engineering Journal 209, pp.223-234 (2012).

DOI: 10.1016/j.cej.2012.07.107

Google Scholar

[15] J.A. de Lima, C. A. Pinotti, M.I. Felisberti, & M.D.C. Goncalves in: Morphology and Mechanical Properties of Nanocomposites of Cellulose Acetate and Organic Montmorillonite Prepared with Different Plasticizers, Wiley Online Library (2011, December 6).

DOI: 10.1002/app.35517

Google Scholar

[16] F.S. Dehkordi, M. Pakizeh, & M.N. Mahboub, Properties and ultrafiltration efficiency of cellulose acetate/organically modified Mt (CA/OMMt) nanocomposite membrane foor humic acid removal, Applied Clay Science (2014).

DOI: 10.1016/j.clay.2014.11.042

Google Scholar

[17] J. Zhang, M. Song, X. Wang, J. Wu, Z. Yang, J. Cao, Y. Chen, & Q. Wei in: Preparation of cellulose acetate/organic montmorillonite composite porous ultrafine fiber membrane for enzyme immobilization, Journal of Applied Polymer Science (21016).

DOI: 10.1002/app.43818

Google Scholar

[18] F. Udin, Montmorillonite: And Introduction to Properties and Utilization, Current Topics in the Utilization of Clay in Industrial and Medical Applications (2020, June 25),.

Google Scholar