Comparison of the Inhibition Effect of Cedrus Atlantica and Azadirachta Indica on Low Carbon Steel Corrosion: Data and Statistical Analysis

Article Preview

Abstract:

Comparative study of the corrosion inhibition effect of specific concentrations of cedrus atlantica (CA) and azadirachta indica (AI) oil distillates was performed on low carbon steel in 3M of C6H7O8 by coupon analysis. Data obtained showed both distillates performed adequately at all concentrations assessed with principal inhibition value of 94.31% and 99.59%. The performance of CA oil distillate was concentration dependent compared to AI distillate which showed limited variation with respect to concentration. Statistical computation by analysis of variance shows inspection time and inhibitor concentration influences the inhibition performance of both compounds. The margin of error values shows the performance values of both compounds above 70% inhibition efficiency is 100% (+0%). Results from standard deviation shows the inhibition efficiency data varied positively with respect inspection time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

261-267

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.T. Loto, C.A. Loto, B.U. Ayozie, T. Sanni, Anti-corrosion properties of rosemary oil and vanillin on low carbon steel in dilute acid solutions, 147th Annual Meeting & Exhibition Supplemental Proceedings, The Minerals, Metals & Materials Series, 2018. https://doi.org/10.1007/978-3-319-72526-0_84.

DOI: 10.1007/978-3-319-72526-0_84

Google Scholar

[2] R.T. Loto, Surface coverage and corrosion inhibition effect of rosmarinus officinalis and zinc oxide on the electrochemical performance of low carbon steel in dilute acid solutions, Results in Phys. 8 (2018) 172–179. https://doi.org/10.1016/j.rinp.2017.12.003.

DOI: 10.1016/j.rinp.2017.12.003

Google Scholar

[3] R.T. Loto, Anti-corrosion performance of the synergistic properties of benzenecarbonitrile and 5-bromovanillin on 1018 carbon steel in HCl environment, Sci. Rep. 7 (2017) 17555. http://doi.org/10.1038/s41598-017-17867-0.

DOI: 10.1038/s41598-017-17867-0

Google Scholar

[4] D. Dwivedi, K. Lepková, T. Becker, Carbon steel corrosion: a review of key surface properties and characterization methods, RSC Adv. 8 (2017) 4580-4610.

DOI: 10.1039/c6ra25094g

Google Scholar

[5] A.C. Uzorh, Corrosion properties of plain carbon steels, Int. J. Eng. Sci. 2(11) (2013)18-24.

Google Scholar

[6] M. Cabrini, S. Lorenzi, T. Pastore, Corrosion Behavior of Carbon Steels in CCTS Environment, Int. J. Corros. (2016) 3121247. https://doi.org/10.1155/2016/3121247.

DOI: 10.1155/2016/3121247

Google Scholar

[7] V.M. Valbonë, R.B. Avni, Corrosion Study of Mild Steel in Aqueous Sulfuric Acid Solution Using 4-Methyl-4H-1,2,4-Triazole-3-Thiol and 2-Mercaptonicotinic Acid—An Experimental and Theoretical Study, Front. Chem. 5(61) (2017). https://doi.org/10.3389/fchem.2017.00061.

DOI: 10.3389/fchem.2017.00061

Google Scholar

[8] A.E. Hughes, J.D. Gorman, P.J.K. Paterson, The characterization of Ce-Mo-based conversion coatings on Al-alloys: Part I, Corros. Sci.38(11) (1996) 1977-1990. https://doi.org/10.1016/S0010-938X(96)00088-1.

DOI: 10.1016/s0010-938x(96)00089-3

Google Scholar

[9] M. Wittmar, M. Veith, G.E. Thompson, I.S. Molchan, T. Hashimoto, P. Skeldon, A.R. Phani, S. Santucci, M.L. Zheludkevich, CeO2-filled sol–gel coatings for corrosion protection of AA2024-T3 aluminium alloy, Corros. Sci. 51(10) (2009) 2304-2315. https://doi.org/10.1016/S0010-938X(96)00088-1.

DOI: 10.1016/j.corsci.2009.06.007

Google Scholar

[10] P.J. Ramakrishnan, V.D.K. Janardhanan, R. Sreekumar, K. Parayil, Investigation on the effect of green inhibitors for corrosion protection of mild steel in 1 M NaOH solution, Int. J. Corros. (2014) 487103. https://doi.org/10.1155/2014/487103.

DOI: 10.1155/2014/487103

Google Scholar

[11] I.Y. Suleiman, A study of the green corrosion inhibition of acacia tortilis distillate on mild steel- sulphuric acid environment, Journal of Advanced Electrochemistry, 2(1) (2016) 50–55.

Google Scholar

[12] R.T. Loto, C.A. Loto, Corrosion inhibition properties of the combined admixture of thiocarbanilide and hexadecyltrimethylammoniumbromide on mild steel in dilute acid solutions, Cogent Chem. 2(1) (2016) 1268377. https://doi.org/10.1080/23312009.2016.1268377.

DOI: 10.1080/23312009.2016.1268377

Google Scholar

[13] R.T. Loto, C.A. Loto, Electrochemical and microstructural analysis of the corrosion inhibition characteristics of atlas cedar essential oil distillates on mild steel in dilute H2SO4 and C6H8O7 electrolytes, J. Bio & Tribo Corros. 5(39) (2016). https://doi.org/10.1007/s40735-019-0236-6.

DOI: 10.1007/s40735-019-0236-6

Google Scholar

[14] R.T. Loto, C.A. Loto, A. Busari, Effect of azadirachta indica oil distillates of on the corrosion inhibition and passivation of low carbon steel in 2.5 M C6H8O7 acid solution, J. Bio & Tribo Corros. 5(70) (2019). https://doi.org/10.1007/s40735-019-0266-0.

DOI: 10.1007/s40735-019-0266-0

Google Scholar

[15] L.T. Popoola, A.S. Grema, G.K. Latinwo, B. Gutti, A.S. Balogun, Corrosion problems during oil and gas production and its mitigation, Int. J. Ind. Chem. 4(35) (2013). https://doi.org/10.1186/2228-5547-4-35.

DOI: 10.1186/2228-5547-4-35

Google Scholar

[16] B. Valdez, M. Schorr, R. Zlatev, M. Carrillo, M. Stoytcheva, L. Alvarez, A. Eliezer, N. Rosas, Corrosion control in industry, IntechOpen, 2012. http://www.doi.org/10.5772/51987.

DOI: 10.5772/51987

Google Scholar

[17] J.A. Gorman, 7 - Corrosion problems affecting steam generator tubes in commercial water-cooled nuclear power plants, Steam Generators for Nuclear Power Plants, 2017, pp.155-181. https://doi.org/10.1016/B978-0-08-100894-2.00009-1.

DOI: 10.1016/b978-0-08-100894-2.00009-1

Google Scholar

[18] R.T. Loto, R. Leramo, O. Oyebade, Synergistic combination effect of salvia officinalis and lavandula officinalis on the corrosion inhibition of low-carbon steel in the presence of SO4 2− and Cl− containing aqueous environment, J. Fail. Anal. Prev. 18(6) (2018) 1429-1438.

DOI: 10.1007/s11668-018-0535-0

Google Scholar

[19] C.A. Loto, R.T. Loto, Effect of dextrin and thiourea additives on the zinc electroplated mild steel in acid chloride solution, Int. J. Elect. Sci. 18(12) (2013) 12434-12450.

Google Scholar

[20] R.T. Loto, Study of the synergistic effect of 2-methoxy-4-formylphenol and sodium molybdenum oxide on the corrosion inhibition of 3CR12 ferritic steel in dilute sulphuric acid, Results in Phys. 7 (2017) 796-776.

DOI: 10.1016/j.rinp.2017.01.042

Google Scholar

[21] A.E. Mohamed, Offshore Structures, Elsevier, Amsterdam, 2012. https://doi.org/10.1016/B978-0-12-385475-9.00009-2.

Google Scholar

[22] J.K. Fink, Petroleum Engineer's Guide to Oil Field Chemicals and Fluids, Elsevier, Amsterdam, 2012. https://doi.org/10.1016/C2009-0-61871-7.

Google Scholar