Study on the Growth Mechanism of Chlorocarbon Radicals on the Surface of CVD Diamond (100)

Article Preview

Abstract:

In the CH3Cl/H2 atmosphere, the adsorption process of various active chlorocarbon groups (CH2Cl, CHCl, CCl) and CH3 on the surface of clean diamond used density functional theory (DFT) calculations during CVD process. The reaction heat and activation energy of the active sites on the adsorption reconstituted surface of D-CH3 and D-CH2Cl were calculated by transition state search to explore the actual effect of the carbon chloride active group on the surface of CVD diamond (100).The results showed that the adsorption capacity of CHCl, CH2Cl and CCl on the substrate was gradually weakened and the adsorption energy of CH2Cl and CH3 was close. Both CHCl and CH2Cl could form diamond bonds with the substrate carbon atoms to directly promote the growth of the diamond coating. Since the C-Cl bond was weaker than the C-H bond, the adsorption recombination surface of CH2Cl generated an energy barrier of the active site lower than the adsorption reconstitution surface of CH3. Therefore, using CH3Cl/H2 as a gas source could effectively reduce the energy required for diamond coating growth.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-88

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Wang, J. Liu, T. Tang, N. Xie and F. H. Sun: Physica B, Vol. 550 (2018), pp.280-293.

Google Scholar

[2] J. Stiegler, A. Bergmaier, J. Michler, S. Laufer, G. Dollinger and E. Blank: Thin Solid Films, Vol. 352 (1999), pp.29-40.

DOI: 10.1016/s0040-6090(99)00285-0

Google Scholar

[3] X. C. Wang, Z. C. Lin, B. Shen and F. H. Sun: Trans. Nonferrous Met. Soc. China, Vol. 25 (2015), pp.791-802.

Google Scholar

[4] J. Weng, J. H. Wang, S. Y. Dai, L. W. Xiong, W. D. Man and F. Liu: Appl. Surf. Sci, Vol. 276 (2013), pp.529-534.

Google Scholar

[5] M. Asmann, J. Heberlein and E. Pfender: Diam. Relat. Mat, Vol. 8 (1999), pp.1-16.

Google Scholar

[6] I. Schmidt and C. Benndorf: Diam. Relat. Mat, Vol. 8 (1999), pp.231-235.

Google Scholar

[7] C. Andrew, N. H. Jeremy and N. R. A. Michael: J. Phys. Chem. A, Vol. 112(2008), p.11436–11448.

Google Scholar

[8] Q. An, M. J. Cheng, W. A. Goddard Ⅲ and A. Jaramillo-Botero: J. Phys. Chem. Lett, Vol. 5 (2014), pp.481-484.

Google Scholar

[9] J. C. Richley, J. N. Harvey and M. N. R. Ashfold: J. Phys. Chem. C, Vol. 116 (2012), pp.7810-7816.

Google Scholar

[10] X. G. Jian and Y. H. Zhang: Acta Phys. Sin, Vol. 64 (2015), p.046701 (in Chinese).

Google Scholar

[11] L. Wang, J. S. Liu and T. Tang: Crystals, Vol. 9 (2019), p.427.

Google Scholar

[12] L. L. Liu, F. J. Kong, G. Jiang and B. W. Yang: Acta Phys. Sin, Vol. 56 (2007), pp.5413-5417.

Google Scholar

[13] N. Chen and F. H. Sun: J. Comput. Theor. Nanosci, Vol. 9 (2012), pp.583-591.

Google Scholar

[14] A. Cheesman, J. N. Harvey and M. N. R: J. Phys. Chem. A, Vol. 112 (2008), pp.11436-11448.

Google Scholar

[15] R. G. Parr, L. V. Szentpály and S. B. Liu: J. Am. Chem. Soc, Vol. 121 (1999), pp.1922-1924.

Google Scholar

[16] B. J. Bai, C. J. Chu, D. E. Patterson, R. H. Hauge and J. L. Margrave: J. Mater. Res, Vol. 8 (1993), pp.233-236.

Google Scholar