[1]
K. Essa, R. Khan, H. Hassanin, et al. An iterative approach of hot isostatic pressing tooling design for net-shape IN718 superalloy parts, Int J Adv Manuf Technol 83 (2016) 1835–1845.
DOI: 10.1007/s00170-015-7603-3
Google Scholar
[2]
W.B. Li, K.E. Easterling, The effect of non-uniform densification during hot isostatic pressing, in: M. Koizomi (Ed.), Proc. of the Third Int. Conf. on Hot Isostatic Pressing, Elsevier Applied Science, London and New York, 1991, p.23–28.
DOI: 10.1007/978-94-011-2900-8_4
Google Scholar
[3]
C. Van Nguyen, A. Bezold, C. Broeckmann, Inclusion of initial powder distribution in FEM modeling of near-net-shape PM hot isostatic pressed components, J. Powder Metall. 57 (4) (2014) 295–303.
DOI: 10.1179/1743290114y.0000000087
Google Scholar
[4]
C. Van Nguyen, Anisotropic shrinkage during HIP of encapsulated powder, J. Mater. Process. Technol. 226 (2015) 134–145.
Google Scholar
[5]
A.G.K. Jinka, R.W. Lewis, Finite element simulation of hot isostatic pressing of metal powders, Comput. Methods Appl. Mech. Engrg. 114 (3–4) (1994) 249–272.
DOI: 10.1016/0045-7825(94)90174-0
Google Scholar
[6]
A. Nohara, T. Nakagawa, T. Soh, T. Shinke, Numerical simulation of the densification behavior of metal powder during hot isostatic pressing, Internat. J. Numer. Methods Engrg. 25 (1988) 213–225.
DOI: 10.1002/nme.1620250117
Google Scholar
[7]
C. Van Nguyena, Y. Deng, A. Bezold, C. Broeckmann, A combined model to simulate the powder densification and shape changes during hot isostatic pressing. Proc.Int. Conf. PM 2015 (2015).
DOI: 10.1016/j.cma.2016.10.033
Google Scholar
[8]
A. Svoboda, H.A. Haggblad, Simulation of hot isostatic pressing of metal powder components to near net shape, Eng. Comput. 13 (5) (1996) 13-37.
DOI: 10.1108/02644409610120713
Google Scholar
[9]
H.A. Haggblad, W.B. Li, A micro mechanical based constitutive model for finite element simulation of hot isostatic pressing of powder, Comput. Methods Appl. Mech. Engrg. 128 (1995) 191-198.
DOI: 10.1016/0045-7825(95)00875-9
Google Scholar
[10]
W.X. Yuan, J. Mei, V. Samarov, D. Seliverstov, X. Wu, Journal of Materials Processing Technology 182 (2007) 39-49.
Google Scholar
[11]
D. Seliverstov, V. Samarov, V. Alexandrov, P. Eckstrom, Proceedings of the International Conference on Hot Isostatic Pressing, Rotterdam (1993).
Google Scholar
[12]
B. Wikman, A. Svoboda, H. Haggblad, A combined material model for numerical simulation of hot isostatic pressing, Comput. Methods Appl. Mech. Engrg. 189 (2000) 901-913.
DOI: 10.1016/s0045-7825(99)00406-5
Google Scholar
[13]
H. Burlet, O. Gillia, Model identification for powder densification, in: Proc. of the Int. Conf. on Hot Isostatic Pressing, (2005) 137–143.
Google Scholar
[14]
C. Geindreau, D. Bouvard, P. Doremus, Investigation of the constitutive behavior of metal powder during hot isostatic pressing with a simulation material, Int. J. Mech. Sci. A/Solids 18 (1999) 581–596.
DOI: 10.1016/s0997-7538(99)00102-3
Google Scholar
[15]
L. Sanchez, E. Ouedraogo, L. Federzoni, P. Stutz, New viscoplastic model to simulate hot isostatic pressing, Powder Metall. 45 (4) (2002) 329-335.
DOI: 10.1179/003258902225007113
Google Scholar
[16]
H.R. Piehler, D.P. Delo, Physical modeling of powder consolidation processes, Prog. Mater. Sci. 42 (1997) 263-276.
DOI: 10.1016/s0079-6425(97)00018-2
Google Scholar
[17]
P. Stutz, G. Aryanpour, O. Bouaziz, C. Dellis, A two strain rate model for the HIPing of austenitic stainless steel powder, in: Pro Int. Workshop on Modelling of Metal Powder Forming Processes, (1997) 113–122.
Google Scholar
[18]
G. Aryanpour, S. Mashl, V. Warke, Elastoplastic-viscoplastic modeling of metal powder compaction: application to hot isostatic pressing, Powder Metall. 56 (1) (2013) 14-23.
DOI: 10.1179/1743290112y.0000000027
Google Scholar