Analysis of Linear Elastic Masonry-Like Solids Subjected to Settlements

Article Preview

Abstract:

A linear elastic no-tension material model is implemented in this contribution to cope with the analysis of masonry-like solids in case of either elastic or inelastic settlements. Instead of implementing an incremental non-linear approach, an energy-based method is adopted to address the elastic no-tension equilibrium. Under a prescribed set of compatible loads, and possible enforced displacements, a solution is found by distributing an equivalent orthotropic material having negligible stiffness in tension, such that the overall strain energy is minimized and the stress tensor is negative semi-definite all over the domain. A preliminary implementation of the proposed method is given by adopting a heuristic approach to turn the multi-constrained minimization problem into an unconstrained one. Numerical simulations focus on a wall with an opening subjected to either inelastic settlement or standing on elastic soil.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

155-162

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Heyman: Int. J. Solids Struct. Vol. 2 (1966), pp.249-279.

Google Scholar

[2] E. Benvenuto: An introduction to the history of structural mechanics, II: Vaulted structures and elastic systems (Springer, New York 1991).

Google Scholar

[3] P.B. Lourenço, in: Historical Constructions, edited by P.B. Lourenço P. Roca, Guimarã̃es, Portugal (2001).

Google Scholar

[4] E. Sacco, in: Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni Vol. 3 (1990), pp.235-258.

DOI: 10.1472/doiserialissuework2.0

Google Scholar

[5] M. Angelillo, L. Cardamone and F. Fortunato: J. Mech. Mater. Struct. Vol. 5 (2010), pp.583-615.

Google Scholar

[6] A. Iannuzzo, F. De Serio, A. Gesualdo, G. Zuccaro, A. Fortunato and M. Angelillo: Int. J. Mason. Res. Innov. Vol. 3 (2018), pp.295-323.

Google Scholar

[7] M. Angelillo, A. Fortunato, A. Gesualdo, A. Iannuzzo and G. Zuccaro: Int. J. Mason. Res. Innov. Vol. 3 (2018), pp.349-368.

Google Scholar

[8] A. Iannuzzo, T. Van Mele and P. Block: Mech. Res. Commun. Vol 107 (2020),.

Google Scholar

[9] A. Iannuzzo, A. Dell'Endice, T. Van Mele and P. Block: Comput. Struct. Vol. 242 (2021).

Google Scholar

[10] A. Tralli, A. Chiozzi, N. Grillanda and M. Milani: Int. J. Solids Struct. Vol 191-192 (2020), pp.187-201.

Google Scholar

[11] S. Tiberti, N. Grillanda, V. Mallardo and G. Milani: Eng. Struct. Vol. 221 (2020).

Google Scholar

[12] M. Pepe, M. Sangirardi, E. Reccia, M. Pingaro, P. Trovalusci and G. de Felice: Front. Built. Environ. Vol. 6 (2020),.

DOI: 10.3389/fbuil.2020.00043

Google Scholar

[13] A. Iannuzzo, M. Angelillo, E. De Chiara, F. De Guglielmo, F. De Serio, F. Ribera and A. Gesualdo: Meccanica Vol. 53 (2018), pp.1857-1873.

DOI: 10.1007/s11012-017-0721-2

Google Scholar

[14] M. Bruggi and A. Taliercio: Comput. Struct. Vol. 159 (2015), pp.14-25.

Google Scholar

[15] D. Briccola, M. Bruggi and A. Taliercio: J. Mech. Mater. Struct. Vol. 13 (2018), pp.631-646.

DOI: 10.2140/jomms.2018.13.631

Google Scholar

[16] D. Briccola and M. Bruggi: Adv. Eng. Softw. Vol. 133 (2019), pp.60-75.

Google Scholar

[17] K. Svanberg: Int. J. Numer. Methods. Eng. Vol. 24(2) (1987), pp.359-373.

Google Scholar

[18] M. Bruggi and A. Taliercio: Struct. Multidisc. Optim. Vol. 55(5) (2017), pp.1831-1846.

Google Scholar