Bond Behavior of Steel Cords for SRG Systems to Cementitious and Lime Based Mortar

Article Preview

Abstract:

Over the past two decades, different innovative systems have been developed for the rehabilitation and retrofitting of existing structures. In particular, SRG (Steel Reinforced Grout) strengthening systems have proven to be very effective in increasing the load carrying capacity and global ductility of reinforced concrete and masonry structures, and their use as an alternative seismic retrofitting solution is increasing rapidly. Although several studies have focused on the characterisation of the mechanical performance of SRG composites subjected to direct tension or bonded to concrete/masonry substrates, the local bond behaviour of steel cords to mortar, which is critical for the overall structural performance of these composites systems, needs to be examined in more depth. To this end, a series of pull-out tests was carried out to study the bond stress transfer of high strength galvanized steel cords embedded in two types of inorganic matrices, including a cementitious and a lime based mortar. In addition, the steel cord to mortar bond was examined through the implementation of a surface-based cohesive contact model in a non-linear finite element framework and the distribution of stresses within the mortar surrounding the steel cord was analysed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

313-318

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.G. Papanicolaou, T.C. Triantafillou, K. Kyriakos, M. Papathanasiou, Textile-reinforced mortar (TRM) versus FRP as strengthening material of URM walls: in-plane cyclic loading. Materials and Structures 40: 1081–1097 (2007).

DOI: 10.1617/s11527-006-9207-8

Google Scholar

[2] T. Triantafillou, Innovative textile-based composites for strengthening and seismic retrofitting of concrete and masonry structures. Advances in FRP Composites in Civil Engineering - Proceedings of the 5th International Conference on FRP Composites in Civil Engineering, CICE 2010 (2011).

DOI: 10.1007/978-3-642-17487-2_1

Google Scholar

[3] Z.C. Tetta, L.N. Koutas, D.A. Bournas, Textile-reinforced mortar (TRM) versus fiber-reinforced polymers (FRP) in shear strengthening of concrete beams. Composites Part B 77: 338-348 (2015).

DOI: 10.1016/j.compositesb.2015.03.055

Google Scholar

[4] G. de Felice, S. De Santis, L. Garmendia, B. Ghiassi, P. Larrinaga, P.B. Lourenço, D.V. Oliveira, F. Paolacci, C.G. Papanicolaou, Mortar-based systems for externally bonded strengthening of masonry. Materials and Structures 47(12):2021-2037 (2014).

DOI: 10.1617/s11527-014-0360-1

Google Scholar

[5] G. de Felice, T. D'Antino, S. De Santis, P. Meriggi, F. Roscini, Lessons learned on the tensile and bond behaviour of Fabric Reinforced Cementitious Matrix (FRCM) composites. Frontiers in Built Environment, section Earthquake Engineering (2020).

DOI: 10.3389/fbuil.2020.00005

Google Scholar

[6] E. Wobbe, P.Silva, B.L Barton, L.R. Dharani, V.Birman, A. Nanni, T. Alkhrdaji, J. Thomas, and G. Tunis, Flexural capacity of RC beams externally bonded with SRP and SRG. In: International SAMPE Technical Conference, pp.3009-3016 (2004).

DOI: 10.1016/j.msea.2005.08.151

Google Scholar

[7] G. de Felice, S. De Santis, R. Realfonzo, A. Napoli, F. Ascione, E. Stievanin, E. Cescatti, M.R. Valluzzi, C. Carloni, and G. Camata, State of the art of steel reinforced grout applications to strengthen masonry structures. American Concrete Institute, ACI Special Publication, June, Issue SP 326 (2018).

DOI: 10.14359/51711085

Google Scholar

[8] C. Carloni, F. Ascione, G. Camata, G. de Felice, S. De Santis, M. Lamberti, A. Napoli, Realfonzo R, M. Santandrea, E. Stievanin, E. Cescatti, M.R. Valluzzi, An overview of the design approach to strengthen existing reinforced concrete structures with SRG. American Concrete Institute, ACI Special Publication, 2018-June (2018).

DOI: 10.14359/51711084

Google Scholar

[9] F. Roscini, S. De Santis, P. Meriggi , G. de Felice, Overview of the mechanical properties of steel reinforced grout systems for structural retrofitting. 12th International Conference on Structural Analysis of Historical Constructions SAHC 2020 (2021).

DOI: 10.23967/sahc.2021.183

Google Scholar

[10] A. Razavizadeh, B. Ghiassi, and D.V. Oliveira, Bond behavior of SRG-strengthened masonry units: Testing and numerical modeling. Construction and Building Materials 64: 387–397 (2014).

DOI: 10.1016/j.conbuildmat.2014.04.070

Google Scholar

[11] S. De Santis and G. de Felice, Steel reinforced grout systems for the strengthening of masonry structures. Composite Structures134:533-548 (2015).

DOI: 10.1016/j.compstruct.2015.08.094

Google Scholar

[12] G.E. Thermou, G. de Felice, S. De Santis, S. Alotaibi, F. Roscini, I. Hajirasouliha, M. Guadagnini, Mechanical characterization of multi-ply steel reinforced grout composites for the strengthening of concrete structures. 9th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering. (CICE 2018) pp.298-305.

DOI: 10.1016/j.conbuildmat.2021.124750

Google Scholar

[13] G.E. Thermou, S. De Santis, G. de Felice, S. Alotaibi, F. Roscini, I. Hajirasouliha, M. Guadagnini, Bond behaviour of multi-ply steel reinforced grout composites, Construction and Building Materials, Volume 305, 124750, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2021.124750 (2021).

DOI: 10.1016/j.conbuildmat.2021.124750

Google Scholar

[14] M. Malena and G. de Felice, Debonding of composites on a curved masonry substrate: Experimental results and analytical formulation. Composite Structures 112 (1): 194-206 (2014).

DOI: 10.1016/j.compstruct.2014.02.004

Google Scholar

[15] M. Malena, Closed-form solution to the debonding of mortar based composites on curved substrates. Composites Part B: EngineeringVolume 139: 249-258, (2018).

DOI: 10.1016/j.compositesb.2017.11.044

Google Scholar

[16] F. Roscini, M. Malena, and G. de Felice, Experimental evidences and numerical modelling of SRG systems under uniaxial load. 10th International Conference on FRP Composites in Civil Engineering (CICE 2020), Istanbul 1-3 July 2020 (2021).

DOI: 10.1007/978-3-030-88166-5_169

Google Scholar

[17] A. Dalalbashi, B. Ghiassi, D. V. Oliveira, Textile-to-mortar bond behaviour in lime-based textile reinforced mortars, Construction and Building Materials, Volume 227, 2019, 116682, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2019.116682 (2019).

DOI: 10.1016/j.conbuildmat.2019.116682

Google Scholar

[18] A. Dalalbashi, B. Ghiassi, D. V. Oliveira, A. Freitas, Fiber-to-mortar bond behavior in TRM composites: Effect of embedded length and fiber configuration, Composites Part B: Engineering, Volume 152, 2018, Pages 43-57, ISSN 1359-8368, https://doi.org/10.1016/j.compositesb. 2018.06.014 (2018).

DOI: 10.1016/j.compositesb.2018.06.014

Google Scholar

[19] A. Dalalbashi, B. Ghiassi, D. V. Oliveira, A. Freitas, Effect of test setup on the fiber-to-mortar pull-out response in TRM composites: Experimental and analytical modeling, Composites Part B: Engineering, Volume 143, 2018, Pages 250-268, ISSN 1359-8368, https://doi.org/10.1016/j.compositesb.2018.02.010 (2018).

DOI: 10.1016/j.compositesb.2018.02.010

Google Scholar

[20] A. Dalalbashi, B. Ghiassi, D. V. Oliveira, Analytical Modeling of the Bond Behavior between ‎Textile ‎and Mortar Based on Pull-Out ‎Tests. KEM 2019; 817:112–7. https://doi.org/10.4028/www.scientific.net/kem.817.112 (2019).

DOI: 10.4028/www.scientific.net/kem.817.112

Google Scholar

[21] ISO 3341:2000(E) Textile glass — Yarns — Determination of breaking force and breaking elongation Verre textile — Fils — Détermination de la force de rupture et de l'allongement à la rupture en traction.

DOI: 10.3403/02000514

Google Scholar

[22] ASTM International - Designation: D2969 − 04 (Reapproved 2014) Standard Test Methods for Steel Tire Cords.

Google Scholar

[23] S. De Santis, G. de Felice, Steel reinforced grout systems for the strengthening of masonry structures, Composite Structures, Volume 134, Pages 533-548, ISSN 0263-8223, https://doi.org/10.1016/j.compstruct.2015.08.094 (2015).

DOI: 10.1016/j.compstruct.2015.08.094

Google Scholar