[1]
M.D. Conci, A.C. Bozzi and A.R.F. Jr: Effect of plasma nitriding potential on tribological behaviour of AISI D2 cold-worked tool steel, Wear, Vol. 317 (2014) pp.188-193.
DOI: 10.1016/j.wear.2014.05.012
Google Scholar
[2]
A. R. Mashreghi, S. M. Y. Soleimani and S. Saberifar: The investigation of wear and corrosion behavior of plasma nitrided DIN 1.2210 cold work tool steel, Materials and Design, Vol. 46 (2013) pp.532-538.
DOI: 10.1016/j.matdes.2012.10.046
Google Scholar
[3]
H. G. Nanesa, J. Boulgakoff and M. Jahazi: Influence of prior cold deformation on microstructure evolution of AISI D2 tool steel after hardening heat treatment, Journal of Manufacturing Processes, Vol. 22 (2016) pp.115-119.
DOI: 10.1016/j.jmapro.2016.02.002
Google Scholar
[4]
A. Zhecheva, W. Sha and S. Malinov: Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods, Surface and Coatings Technology, Vol. 200 (2005) pp.2192-2207.
DOI: 10.1016/j.surfcoat.2004.07.115
Google Scholar
[5]
X. Wang, S. Bai, F. Li, D. Li and Z. Zhang: Effect of plasma nitriding and titanium nitride coating on the corrosion resistance of titanium, The Journal of prosthetic dentistry, Vol. 116 (2016) pp.450-456.
DOI: 10.1016/j.prosdent.2016.01.016
Google Scholar
[6]
D. She, W. Yue, Z. Fu, C. Wang, X. Yang and J. Liu: Effects of nitriding temperature on microstructures and vacuum tribological properties of plasma-nitrided titanium, Surface and Coatings Technology, Vol. 264 (2015) pp.32-40.
DOI: 10.1016/j.surfcoat.2015.01.029
Google Scholar
[7]
Y. Tong, T.W. Guo, J. Wang, H.F. Liang and Q. Mi: Effects of plasma nitriding and TiN coating duplex treatment on wear resistance of commercially pure titanium, Advanced Materials Research, Vol. 217-218 (2011) pp.1050-1055.
DOI: 10.4028/www.scientific.net/amr.217-218.1050
Google Scholar
[8]
A.D. LeClaire and G. Neumann: Landolt Börnstein, Numerical Data and Functional Relationships in Sciences and Technology, Diffusion in Solid Metals and Alloys, Springer-Verlag, Berlin, Vol. 26 (1990) p.476.
Google Scholar
[9]
E. Yun, K. Lee and S. Lee: Correlation of microstructure with high-temperature hardness of (TiC, TiN)/Ti-6Al-4V surface composites fabricated by high-energy electron-beam irradiation, Surface and Coatings Technology, Vol. 191 (2005) pp.83-89.
DOI: 10.1016/j.surfcoat.2004.02.040
Google Scholar
[10]
B. Sarma, N. Tikekar and K. Chandran: Kinetics of growth of superhard boride layers during solid state diffusion of boron into titanium, Ceramics International, Vol. 38 (2012) pp.6795-6805.
DOI: 10.1016/j.ceramint.2012.05.077
Google Scholar
[11]
J.B.W. Jr, W.E. Tefft and D.G.L. Jr: Elastic constants of rutile (TiO2), Journal of research of the National Bureau of Standards, Vol. 66 (1962) 465-471.
Google Scholar
[12]
X.Y. Han, Y. Sun and X.L. Liu: Influence of thermal shock behavior on microstructure and interface bonding strength of WC/W coating, Surface and Coatings Technology, Vol. 393 (2020) p.125787.
DOI: 10.1016/j.surfcoat.2020.125787
Google Scholar
[13]
S. Zhang and X. Zhang: Toughness evaluation of hard coatings and thin films, Thin Solid Films, Vol. 520 (2012) pp.2375-2389.
DOI: 10.1016/j.tsf.2011.09.036
Google Scholar